
1

Career Explorations -- Networking And Security
Programming Lab 1

Your task, should you choose to accept it, is to figure out a way to pass notes between two
people (just like in the pre-lab activity) using the programming language called Processing.

We will provide you with some code to get you started and indicate the places where you will
need to write your solutions! If any of these steps don’t work as expected please raise your
hand and one of us will come around to you.

Step 1: Getting started

To kick-start the lab, first, you must download the starter code. To do this, Download the .zip file
from https://bit.ly/2KBbRUX onto your desktop (the download should start automatically). Then,
right click on it and select “Extract”. You should see a folder entitled Main on your Desktop.

You may need to download Processing. To do this, visit https://bit.ly/2GwpO4L in a browser and
the download should start automatically. Once it is downloaded, right click on the file and select
“Extract”. This may take a few moments.

Once the download completes, open Processing. You can do this by clicking on the start menu
and typing Processing in the search bar. When the program opens, select File -> Open, then
click on “Desktop”. Select the file Main that you just created and click on Open.

A second Window of Processing should appear. Feel free to close the original one. The
processing window should have tabs entitled “Main”, “Lab_1”, “Lab_2”, “Lab_3”, etc. If it does
not, please flag an instructor over to help.

Select the “Lab_1” tab to start your first programming lab!

Step 2: Explore the Interface

The starter code that we’ve provided you with will get you started. To run the starter code, press
the play button in the top left corner of the screen. A window with 7 stick figures (labelled 0
through 6) should show up. You can click-and-drag to move people around.

Now, press the Run button on the lower right of the window. Nothing should happen, except that
the run button should turn yellow and read “Pause”.

Sending a Letter. To send a letter from Person 4 to Person 1, click once on Person 4 and then
on Person 1. If your program is not paused, you should see a blue envelope stutter across the

https://bit.ly/2KBbRUX
https://bit.ly/2GwpO4L

2

screen from Person 4 to Person 1. You can do this between any two Persons who are
connected by a yellow line (e.g. Person 5 and Person 0, but not Person 2 and Person 3). Play
around with sending messages between connected Persons. What happens when you try and
send a letter from 5 to 3?

You can toggle the Run/Pause button to pause the animations (try hitting the spacebar , the ‘r’
key, or the ‘p’ key). Once you’ve paused the animation, try clicking the Step button (or similarly
the ‘s’ or TAB keys).

At some point, try and send a letter between two people connected by a line (e.g. People 3 and
0) pause the animation before the letter arrives. Then mouseover the letter and notice that the
numbers of the sender and the receiver in the black box as Snd (for sender) and Rcv (for
recipient).

If the window freezes, click on the Processing window and hit the Play button again.

Step 3: Respond To a Letter

Now it’s time to write some code!! The people in our current simulation are rather rude, they
receive letters but never respond to them….. Jerks

Your first programming task is to give them some manners. But first, some background.

Code is organized into chunks called commands. Some commands are built into the
programming language, such as arithmetic addition (+) or subtraction (-). Others are built up by
programmers to help organize our thinking.

You will implement the command itsForMe, which represents the code that should be
executed by a Person whenever they receive a letter addressed to them. What do you do when
you receive a letter that is addressed to you? You respond to it of course!====

For instance, in the diagram below, Person 1 is about to receive a Letter from Person 4, which
is addressed to them (see Rcv = 1). On the next step, when they do receive the letter, they
will execute the itsForMe command on the letter.

What does it mean to “execute a command on the letter”? Examining the Lab_1 file, we can
see the location where you will define the behavior of the itsForMe command. It says

void itsForMe(Letter l) {
 // TO DO : fill in code here (Beware! Code after // isn’t run!)
} (don’t worry about the void for now)

3

In this context, the Letter l is the letter that the Person needs to respond to. So, in the above
example, the Letter l will be the letter in the picture. So what should you do? Send a
response back to the Person who wrote the letter to you!

Your solution should send letters back and forth between two line-connected Persons. There
are a handful of commands that might be helpful in crafting your solution.

Person getSender(Letter l)

Gets the sender of the letter l.
To execute this command, you type getSender(l),
which will behave like a function in math, where it
has an input and an output. Here, the input is l and
the output is the Person who sent l. In the example
on the right, getSender(l) is the Person numbered
4.

Person getRecipient(Letter l)
Gets the recipient of the letter l. For the letter in the
figure to the right, it will return 1.

void sendALetterTo(Person p)

sendALetterTo will send a letter to the person p. For
example, in the image on the right, in order to send
the letter from Person 4 to Person 1, Person 4 had to
execute sendALetterTo(p) where p was equal to
the Person numbered 1.

void replyTo(Letter l)

Using this function will look at the sender of the letter l and send a letter back. In the
example on the upper right, if Person 1 executes replyTo(l) where l is the depicted
letter, it will send a letter back to Person 4.

4

Step 4: Send A Far-away Message

You may have noticed that if you try to send a message to a person to whom you are not
connected by a yellow line, nothing happens. This is because you currently “don’t know” how to
get there. We will say that if two Persons are connected by a single yellow line, they are
neighbors.

Think back to the group activity we just did. How did you pass a note to someone who wasn’t
sitting next to you? You probably instructed a person who was sitting next to you to give it to
your far-away correspondent.

Conversely, what happened when you received a note that was destined for a person who you
didn’t know how to get to? What about when you did know?

We’ve designed the commands to mirror this way of thinking. There is one command that will be
executed when you doKnow where to forward the Letter to, and there is another command that
will be executed when you dontKnow who to give the letter to. We’ve gone ahead and filled in
the code for the doKnow command. You should only fill in the dontKnow command for now.

Depending on your solution, you may see many white letters. This is okay! These letters simply
represent the fact that the sender doesn’t know how to get to the recipient and is exploring its
neighbors. In fact, if you successfully implement a far-away communication, you should see a
checkmark at the recipient Person and may see many sad faces all over the place.

Your ultimate goal is to be able to (after a period of chaotic white-letter exploration)
communicate with blue letters, which means learning information about the network -- we’ll see
how to do this in step 5. This will also fix the sad faces.

You may find the following commands (in addition to the previous ones) helpful in crafting your
solution:

void forwardToAll(Letter l)

The forwardToAll command will forward a letter l to every
neighbor. For example in the image to the right, executing this
command on Person 5 will send a letter to each of its three
neighbors.

void forwardToAllExcept(Person neighbor, Letter l)

The forwardToAllExcept command will forward a
letter l to every neighbor except the neighbor
given as an input. For example, if this command is

5

called on Person 5 and neighbor is Person 6, then Person 6 will forward to only its other
neighbors.

Person getRandomNeighbor()

getRandomNeighbor will return a random neighbor. On
the right we show what happens when Person 5
executes forwardTo(getRandomNeighbor(), l)
three different times for some Letter l.

Person getRandomNeighborExcept(Person neighbor)

getRandomNeighborExcept will return a random
neighbor except the neighbor given as input. In the
example on the right, calling this command on Person 5 with neighbor equal to Person 6,
will permit all of the options except for the bottom right situation.

void forwardTo(Person neighbor, Letter l)

This function will take in a neighbor and pass along the letter l to them. In the example
above. Person 5 is forwarding to a router provided by the function
getRandomNeighbor(). Note that the forwardTo function will preserve the color of
letters.

boolean isMyNumber(int number)

Each person has a number. isMyNumber will determine if the current person’s number is
the input number. If so, it will return true, otherwise it will return false. For example on
Person 5, isMyNumber(5) is true.

Step 5: Learning How to Deliver Letters

It seems silly to have to explore the network the way that we did in Step 5 every time we want to
send a Letter across the room. What if we could use the information that people observe to help
us save the effort of sending so many extra letters through the network? In this step, you will
implement the command discover(Person neighbor, Letter l) which is called
whenever a Person receives a Letter l from their neighbor.

Lets Personify. What fact(s) can you learn if Jonathan hands you a letter that is from Brianna
and addressed to Eric?

You know that Jonathan can return a letter to Brianna

So, who should you hand your letter to if you want to send or forward a letter to Brianna?

To Jonathan!

6

All you need to do is implement this reasoning in the discover command! You may find the
following commands useful in crafting your solution, and you may get inspiration from the code
in the doKnow method.

void memorizeHowToGetTo(Person p, Person neighbor)

memorizeHowToGetTo makes you “know” that to send a letter
to Person p, you can just give it to neighbor. This is closely
related to the rememberHowToGetTo method used in the
doKnow command definition.

For example, in the image to the right, Person 4 was given a
letter (by Person 6) addressed to Person 1 sent by Person 5.
Person 4 can execute memorizeHowToGetTo(p,neighbor),
where p is Person 5 and neighbor is Person 6. From this point
on, Person 4 will hand future Letters that are addressed to
Person 5 to Person 6 (as in the below right).

Person rememberHowToGetTo(Person p)
rememberHowToGetTo returns the neighbor who can deliver
letters to Person p. In the figure to the right (described above), If
Person 4 executes rememberHowToGetTo(Person p)
where p is Person 5, it returns Person 6.

Extra Credit Task 1: Experiment with different routing strategies

If your solution to Step 4 was random, try forwarding to all of your neighbors, or only to certain
ones. If you forwarded to all of your neighbors, try a random solution! Play around with these
different commands and figure out which solution seems the “best”. Call one of us over and
explain your reasoning.

Extra Credit Task 2: Static Routing

The solution so far is a dynamic routing scheme, in that it figures out how to forward letters
based on what happens when the program runs. Try and implement a static routing scheme.
Here there is no distinction between knowing and not knowing, because you always know
where to hand the letter. To do this, you need to write special rules for each person. You will
need if-statements and the isMyNumber function to figure out where to forward letters.

Hint: Each Person will forward all of the Letters it receives to the same neighbor. For instance,
Person 3 may always forward to Person 4.

https://processing.org/reference/if.html

