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Reasoning about network programs is challenging because of how they divide la-

bor: the control plane computes high level routes through the network and compiles

them to device configurations, while the data plane uses these configurations to re-

alize the desired forwarding behavior. In practice, the correctness of the data plane

often assumes that the configurations generated by the control plane will satisfy

complex specifications. These specifications are either missing or maintained in

complex English language documents, which makes correctly configuring devices

hard.

This thesis tackles this problem from three angles. First, we present algorithms

for computing control plane interface specifications that ensure the safety of the

data plane. These specifications can be used to improve the safety and quality of

both the control plane and of the data plane. Then, we show how to automat-

ically generate configurations for data plane programs, and finally, we conclude

with a semantic framework for programming and relational verification of pairs of

configurable programs.



BIOGRAPHICAL SKETCH

Eric Hayden Campbell was born at the University of Chicago hospital in 1995.

Raised primarily in San Jose, California, he and his family moved to Amsterdam

in 2011. He graduated from the International School of Amsterdam in 2013, at

which point, he moved back to California to attend Pomona College. There he fell

in love with computer science, discrete mathematics, and formal logic, receiving

his bachelor’s degrees in Mathematics and in Computer Science in 2017.

iii



For Priya, who never pulled punches

iv



ACKNOWLEDGEMENTS

First and foremost, thanks to my advisor, Nate. Over the years, Nate has put

up with my crackpot ideas and guided me through numerous eleventh-hour paper

pushes. I thank him for his unwavering support and guidance.

I would also be remiss if I didn’t thank Hossein Hojjat for being my formal

methods guru: introducing me to synthesis and the formal methods community at

large.

Thanks to Mark Moeller for moral support, running support, and for never

being too good for a free banana. Thanks to Ryan Doenges for encouraging me, by

example, to only do exactly what I wanted to do. Thanks to Jonathan DiLorenzo

for mentoring me in health, wine, and cheese.

Thanks to Ryland Bednarek, Kiran Tomlinson, Mario Sanchez, Nora Murphy,

Morgan Shelton, Peter Chwazik, and Marty Heresniak, for pushing my musical

development, and giving me a creative restful outlet that has, through the years,

supported my main academic endeavors.

And to Jane Lu, thanks for the endless dancing, singing, and outdoor adven-

tures.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I The Problem of Interfaces 1

1 Managing Changing Programs 2
1.1 A Subprime Meridian . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Improving P4 as a Specification Language . . . . . . . . . . . . . . 4
1.3 Leveraging Specifications . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Attribution and Acknowledgements . . . . . . . . . . . . . . . . . . 10

2 Data Plane Programming 12
2.1 Data Plane Programs Have Bugs . . . . . . . . . . . . . . . . . . . 18

2.1.1 Parser Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Control Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Table Reads Bugs . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Table Action Bugs . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.5 Default Action Bugs . . . . . . . . . . . . . . . . . . . . . . 25

3 Static Data Plane Analysis and Control Assumptions 26
3.1 A “Featherweight” P4 . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . 40
3.1.4 Safety of SafeP4 . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Experience (Evaluation) . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Overview of Bugs in the Wild . . . . . . . . . . . . . . . . . 46
3.2.2 P4Check in Action . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Data Plane Verification and the Control Plane Interface 55
4.1 The Guarded Command Language . . . . . . . . . . . . . . . . . . 56
4.2 Symbolic Compilation . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Modeling P4 in GCL . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.3 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



4.3.4 Stateful Operations . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.5 Match-Action Tables . . . . . . . . . . . . . . . . . . . . . . 62

4.4 A First Attempt: Manual Control Interface Specs . . . . . . . . . . 63

II Control Interface Specifications 66

5 Computing Precise Control Interface Specifications 67
5.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Inference of Control Interface Specifications . . . . . . . . . 75
5.1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.1 Theories of Fixed-width Bitvectors . . . . . . . . . . . . . . 78
5.2.2 Syntax and Semantics of the Guarded Pipeline Language

(GPL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Modeling Tables as Uninterpreted Functions . . . . . . . . . 82
5.2.4 Symbolic Compilation . . . . . . . . . . . . . . . . . . . . . 84

5.3 Computing Efficiently Control-Monitorable Sentences . . . . . . . . 89
5.3.1 Qe Computes Precise ci-specs . . . . . . . . . . . . . . . . . 91
5.3.2 Precise ci-spec Inference in ECMS Solves Qe . . . . . . . . . 95

5.4 Programmatic Qe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.1 Paths Produce Smaller QE Problems . . . . . . . . . . . . . 97
5.4.2 A Path-Based Iterative Strengthening Algorithm . . . . . . 99

5.5 Specifications for Data Planes . . . . . . . . . . . . . . . . . . . . . 101
5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.7 Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7.1 Capisce in Practice . . . . . . . . . . . . . . . . . . . . . . . 105
5.7.2 True Data-Plane Bugs . . . . . . . . . . . . . . . . . . . . . 108
5.7.3 Bugs Found by Inspecting ci-specs . . . . . . . . . . . . . . 110
5.7.4 Analyzing Path Decomposition . . . . . . . . . . . . . . . . 112
5.7.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.7.6 Comparison to bf4 . . . . . . . . . . . . . . . . . . . . . . . 116

III Verified Configuration 119

6 Automatically Configuring the Data Plane 120
6.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Control Plane Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.1 Basic Definitions and Verification . . . . . . . . . . . . . . . 131
6.2.2 Synthesizing Candidates via Sketches . . . . . . . . . . . . . 135
6.2.3 Counterexample-Guided Search . . . . . . . . . . . . . . . . 136
6.2.4 Synthesis Algorithm . . . . . . . . . . . . . . . . . . . . . . 137
6.2.5 Formal Properties . . . . . . . . . . . . . . . . . . . . . . . . 139

vii



6.3 A Scalable Solution: Incremental Synthesis . . . . . . . . . . . . . . 140
6.3.1 Single Counterexample-Guided Search . . . . . . . . . . . . 140
6.3.2 Incremental Synthesis Algorithm . . . . . . . . . . . . . . . 143
6.3.3 Formal Properties . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Heuristics and Optimizations . . . . . . . . . . . . . . . . . . . . . 145
6.4.1 Exploiting Incrementality . . . . . . . . . . . . . . . . . . . 145
6.4.2 Model-Finding Heuristics . . . . . . . . . . . . . . . . . . . . 147

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6.1 Retargeting Study . . . . . . . . . . . . . . . . . . . . . . . 151
6.6.2 Network Emulation . . . . . . . . . . . . . . . . . . . . . . . 153
6.6.3 Case Study: Trellis & ONOS . . . . . . . . . . . . . . . . . . 153
6.6.4 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . 155

6.7 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 156
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Relational Hoare Lenses 159
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.2 Basic Definitions for Relational Hoare Lenses . . . . . . . . . . . . 165

7.2.1 Specifications for lenses . . . . . . . . . . . . . . . . . . . . . 168
7.2.2 Relational Hoare Lenses . . . . . . . . . . . . . . . . . . . . 170

7.3 Relational Program Logics . . . . . . . . . . . . . . . . . . . . . . . 173
7.3.1 Relational Hoare Logic . . . . . . . . . . . . . . . . . . . . . 175
7.3.2 Reasoning about Programs with RHLenses . . . . . . . . . . 179

7.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.5 Case Study: Network Data Plane Programs . . . . . . . . . . . . . 189

7.5.1 Source Program . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.5.2 Action Decompose . . . . . . . . . . . . . . . . . . . . . . . 192
7.5.3 Metadata Decomposition . . . . . . . . . . . . . . . . . . . . 194
7.5.4 Early Validation . . . . . . . . . . . . . . . . . . . . . . . . 195

8 Related Work 197

9 Conclusion 202
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Bibliography 206

viii



LIST OF TABLES

5.1 Experience with using Capisce to check Header Validity on a broad
range of P4 programs. . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Experience with using Capisce to check Determined Forwarding on
a broad range of P4 programs. . . . . . . . . . . . . . . . . . . . . 107

ix



LIST OF FIGURES

2.1 Abstract forwarding model. . . . . . . . . . . . . . . . . . . . . . . 13
2.2 (Left) Header formats and parse graph that extracts an Ethernet

header optionally followed by VLAN and/or IPv4 headers. (Right)
P4 code implementing the same parser. . . . . . . . . . . . . . . . 14

2.3 P4 tables. forward reads the validity of the ipv4 and vlan header
instances and the dstAddr field of the ipv4 header instance, and
calls one of its actions: nop, next hop, or remove. . . . . . . . . . 15

2.4 P4 actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Left: unsafe code in NetHCF; Right: our type-safe fix; Bottom:

common code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Left: unsafe code in NetCache; Right: our type-safe fix; Bottom:

Common code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Left: a table in switch.p4 with unprotected conditional reads;

Right: our type-safe fix. . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Left: unsafe code in switch.p4; Right: our type-safe fix. . . . . . . 24
2.9 Left: unsafe code in NetCache; Right: our type-safe fix. . . . . . 25

3.1 Syntax of SafeP4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Semantics of header types (left) and auxiliary functions (right). . . 36
3.3 Command typing rules for SafeP4 . . . . . . . . . . . . . . . . . . 37
3.4 Action typing rule for SafeP4 . . . . . . . . . . . . . . . . . . . . . 39
3.5 Expression typing rules for SafeP4 . . . . . . . . . . . . . . . . . . 39
3.6 Selected rules of the operational semantics of SafeP4; the elided

rules are standard. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Selected rules of the operational semantics for expressions. . . . . . 42
3.8 The Entailment relation between header instances and header in-

stance types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.9 Proportional frequencies of each bug type per-program. The raw

number of bugs for each program and category is reported at the
top of each stacked bar. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Frequency of each bug across all programs. The raw number of
bugs in each category is reported to the right of the bar . . . . . . 46

3.11 Curated output from P4Check for the parser bug in NetHCF be-
fore (above) and after (below) modifying parse ethernet . . . . . 49

3.12 Warnings printed after fixing switch.p4’s reads bug (top), and its
actions bug (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Syntax (left) and semantics (right) of the Guarded Command Lan-
guage GCL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Bitvector Arithmetic: expressions (left) and logical formulae (right) 58

5.1 The control plane generates configs that define data plane behavior. 67

x



5.2 An example data plane pipeline program (right) and with an as-
serted ci-spec (bottom right). Capisce computes a precise ci-spec
(center), which ensures that the pipeline satisfies the spec. If the
control plane (left) installs a bad config (top), it is rejected. Safe
configs, like the one shown on the bottom, are accepted and can be
safely installed into the pipeline program. . . . . . . . . . . . . . . 72

5.3 Bitvector Theories. The syntax of UFBV formulae (left) and ex-
pressions (middle). The classification of bitvector theories (above
right), depending on whether they allow quantifiers (∀) and/or un-
interpreted functions (F ). The semantics of bitvector expressions
are standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Syntax (left) and semantics (right) of Guarded Pipeline Language
GPL(T ) over a bitvector theory T . Highlighted variants only occur
in GPL(T ); the other variants are Guarded Command Language
GCL(T ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Path coverage over time for Header Validity analysis of programs
with fewer than 100k paths. . . . . . . . . . . . . . . . . . . . . . 112

5.6 Comparing analysis capabilities of bf4 and Capisce w.r.t time (bot-
tom) and bugs controlled (top). Note the logarithmic y-axes on the
time charts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Avenir maps control plane operations for an abstract pipeline into
corresponding operations for a target using sketch-based synthesis.
The synthesis loop alternates between verifying the correctness of
a candidate implementation and learning from counterexamples to
generate a better one; the holes (e.g., ?5) in the target sketch denote
missing values that are filled in using an SMT solver. . . . . . . . 124

6.2 Pipelines used in example scenario. . . . . . . . . . . . . . . . . . . 125
6.3 The Status Quo Manual translations from Pipeline 1 to Pipelines

2 and 3. Avenir automates theses translations entirely . . . . . . . 125
6.4 The Status Quo: Manual translations in pseudocode from “one

big table” (OBT ) to Pipelines 1 through 3. . . . . . . . . . . . . . 126
6.5 Dynamic Configurations used in example scenario. Pipe2 is an-

notated with “holes” to be filled in. During synthesis, Avenir
solves for these unknowns and concludes that ?1 = ABB28FC,
?2 = set meta(5), ?3 = 5, ?4 = set out(5). . . . . . . . . . . . . . . . 129

6.6 Pipeline syntax. Actions vary under starred variants . . . . . . . . 132
6.7 Summary of holes used in sketching. . . . . . . . . . . . . . . . . . 135
6.8 The model function. In the above, the vector x is all of the non-hole

variables that occur in the formula. . . . . . . . . . . . . . . . . . . 137
6.9 Simple Algorithm for Control Plane Synthesis. . . . . . . . . . . . 137
6.10 Basic Sketch for Pipe1: Satisfiable for packets that hit L2’s first

row and L3’s second. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xi



6.11 Incremental Sketch for Pipe1: Unsatisfiable for packets that hit L2’s
first row and L3’s second, which triggers backtracking, remember-
ing that the previously-synthesized edit was incorrect. . . . . . . . 138

6.12 The model′ function computes edits to physical state (p, σ) to ac-
comodate the counterexample χ. The oracle soundly restricts the
search space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.13 The incremental backtracking CEGIS algorithm. . . . . . . . . . . 142
6.14 Retargeting case study: solid lines show cold-start completion %;

dotted lines show hot-start completion %. . . . . . . . . . . . . . . 150
6.15 Proportion of all pairs of 64 hosts connected in a star topology that

have completed a successful IPv4 ping. . . . . . . . . . . . . . . . . 150
6.16 Completion graph for mapping 40k fabric.p4 IPv6 route insertions

onto bcm.p4; ONOS takes around 15 min. . . . . . . . . . . . . . . 151
6.17 Program bits vs time to translate 100 edits. The vertical lines

estimate the sizes of common router programs. . . . . . . . . . . . 155
6.18 Classifier Scaling. We fixed the number of 32-bit output variables

to 8, and varied the number of keys. . . . . . . . . . . . . . . . . . 155

7.1 A lens synchronizing abstract and concrete views of a packet for-
warding pipeline. The relation Θ describes the relation maintained
by the lens’s putR and putL functions. . . . . . . . . . . . . . . . . 163

7.2 A judgment defining whether a configuration is valid w.r.t. a schema173
7.3 Syntax (left), denotational semantics (right) , and auxiliary sets

(bottom) for While . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.4 The syntax (left) and semantics of relational expressions (middle)

and formulae (right) . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.5 Structural axioms and inference rules for closed programs [15, 9] . . 179
7.6 Correpondence between the RHL proof system and RHLens com-

binators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.7 Summary of the core data structures and smart constructors in

Spectacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.8 Modules describing Lenses (right) and the configurations they act

upon (left) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

xii



Part I

The Problem of Interfaces

1



CHAPTER 1

MANAGING CHANGING PROGRAMS

The Internet was built on standards. Standardization bodies produce spec-

ification documents that describe numerous standardized protocols for enabling

communication between devices. These protocols specify intricate message for-

mats, semantics, and patterns. Having a robust set of protocols with agreed-upon

semantics enables decentralized growth of computer networks. That is, an engineer

who faithfully implements a standardized communication protocol, such as BGP,

can generally believe that their implementation will be able to communicate with

any other BGP-enabled device.

Modern networking architectures promote a different set of values. From the

reliable model of rigid standardization, design patterns like software-defined net-

working (SDN) and deep network programability [52] permit flexibility and agility

in network design. For instance, the programming language P4 allows engineers to

program protocol-independent packet processors [20]. That is, engineers are able

to define their own packet-level communication formats and forwarding patterns

to suit their specific needs.

However, this preponderance of data formats is dangerous for system reliability.

As any standardization committee will tell you, the path to “rough consensus

and working code” is a long one, requiring many iterations before the protocol is

standardized. Indeed, the modern Internet protocol suite is the result of decades of

debate and scores of revisions. Similarly, bespoke packet processing logic typically

requires many iterations before it reaches a stable state. As we’ll see, each of these

changes to the packet processing logic can have significant ramifications throughout

the networking software stack.
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Rather than yearn for the good old days of standardization, this dissertation

proposes formal tools that help us move with the constant ebb and flow of software

development for packet processors. If we can formally understand the ramifications

of various changes (Chapter 5), abstract changes away entirely (Chapter 6), and/or

reason about changes formally (Chapter 7), we can more robustly manage the

variation and evolution of packet processing software.

1.1 A Subprime Meridian

The computer network is divided by an architectural meridian: the interface be-

tween the control plane and the data plane. The control plane does the complex

computational work: computing routes through the network to ensure requests get

served, deciding which potentially malicious agents to block to ensure they cannot

access sensitive data, or balancing the network load between hosts to ensure that

no one gets overwhelmed. Meanwhile, the data plane—which is a collection of

hardware that is highly-specialized to rapidly and efficiently transform and trans-

fer internet data packets—realizes the control plane’s policies. We use the term

switch to refer to an abstract data plane forwarding device. To enact high-level

policies, the control plane configures the data plane’s behavior using the control

plane interface.

Unfortunately, the control plane interface is poorly specified. Traditionally,

hardware vendors release switches alongside lengthy English language documents

that describe the control plane interface. However, these specifications are of-

ten insufficient, leaving significant behaviors undefined, underspecified, or simply

incorrect.

Network engineers have been using P4 to shore up the robustness of the control-

3



plane interface. Optimistically, network engineers write P4 code that is compiled

directly to a configurable hardware format. The P4 code specifies both structure of

the interface, and the forwarding logic that relies on that interface. Conceptually,

the P4 code implements the semantics of the interface. However, after Intel’s recent

cancelation of its flagship P4-enabled switch line, Tofino, using P4 to implement

real computer networks is less common.

A more widely applicable use case of P4, is as a specification language. Network

engineers, especially at Google, have been using P4 to specify fixed-function, i.e.

non-programmable, switches from vendors like Broadcomm [2]. These specification

programs can be used bi-directionally, both to characterize correct behavior for the

data plane switch it models and to characterize correct behavior for the control

plane. This has enabled engineers to perform automatic verification [72, 108] and

to generate concrete packets and configurations to use as test cases for the data

plane [97].

1.2 Improving P4 as a Specification Language

Unfortunately, P4 was designed for programming, not specification, which has

caused some growing pains. A very sensible language design decision—especially

for a language that is meant to be amenable to many different hardware targets—is

to allow compiler designers significant freedom in interpreting the language. In the

specification, this is characterized as undefined behavior. Largely, the P4 language

limits undefined behavior, but there are a few places it can arise.

Undefined behavior presents a challenge to using P4 as a specification language,

because its presence is generally not apparent to the programmer. In Section 2.1
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we discuss a collection of bugs in real P4 programs where possibly-uninitialized

data was accessed—in P4, reading uninitialized data returns an undefined value.

In Chapter 3 we define a type system for an “featherweight” version of P4

called SafeP4 that avoids reading unintialized data. We use an occurence-style

type system, and prove that our analysis is sound and complete. We also ana-

lyze a collection of P4 programs and propose a taxonomy of of code repairs that

corresponds to the taxonomy of bugs from Section 2.1.

We can generalize these obervations beyond just avoiding undefined behavior.

In general, a P4 program may have its own correctness specification that must be

satisfied: e.g. IPv4 and IPv6 can never exist simultaneously in a single packet, or

an emitted packet’s time-to-live (TTL) field is never zero (which should indicate

that the packet should be dropped, and an error packet returned to the sender).

Ideally, P4 programs-as-specifications would be written to satisfy the data plane

correctness specification for every possible way that the control plane could con-

figure it. However, in practice, programmers often make assumptions about the

content of the configurations (i.e. that they must adhere to complex invariants).

As a result, verification tools require assumptions about the behavior of the control

plane. For instance, SafeP4 (Chapter 3) makes a collection of assumptions that

the control plane is locally-sensible. That is, we assume that the control plane

never reads invalid data. However, if even in the presence of these assumptions,

the controller can configure the tables in a way that allows invalid data to be read,

the program will be rejected by the type system.

Taking a step back, we want a general framework for characterizing limitations

on the control plane. Existing work on p4-constraints, and p4v (see Chapter 4)
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has proposed using of first-order formulae to constrain the control plane interface.

These control plane interface specs (ci-specs) are very useful; they can be used to:

runtime-monitor the control plane, fuzz-test the control plane and the data plane,

or even use them in a formal verification context. However, network engineers are

not used to writing specifications.

In Chapter 5 we propose Capisce, a framework for inferring ci-specs

automatically—taking as input a switch program and its correctness specification.

The ci-specs ψ computed by Capisce are precise: a configuration satisfies ψ if and

only if there are no reachable bugs in the switch program. They are also efficiently

control-monitorable, which means that for a fixed configuration, evaluating ψ is

polynomial.

Having precise ci-specs closes the loop on using P4 as a programming-and-

specification language for switches. Now programmers have an executable P4

program that gives precise semantics to the interface, and a set of constraints—

the ci-spec—that describes the correct use of the program.

1.3 Leveraging Specifications

We’ll see that once we can precisely characterize the control plane interface, we can

manage the variability and diversity that is inherent to computer networks. Most

network operators build networks to support a varied collection of hardware, which

results in devices with heterogeneous feature sets. This heterogeneity manifests as

complexity throughout the control plane.

To manage device heterogeneity, network engineers can leverage abstraction—
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designing a unifying logical interface to support the motley collection of physical

switches. Of course, both the unifying logical interface and the corresponding

switches and can be specified as P4 programs. For example, in the Open Network

Operating System (ONOS [17]), the high-level interface is specified using a P4

program called fabric.p4, which is then mapped down to an array of target

devices, which are either implemented or specified in P4.

The handwritten mapping code that synchronizes the configurations of logical

and target programs is expensive to develop and error prone to build and maintain.

To make matters worse, and every incremental change to a switch program or minor

difference between switches can result in wide-sweeping changes. ONOS engineers

shared an example (more in Chapter 6) of a seemingly trivial data plane change

that broke abstraction boundaries and propagated all the way to the network

application logic.

In Part III we leverage code as specifications to synchronize the interface of the

logical and target programs in a verified manner. Concretely, we want to ensure

with synchronized configs, the logical and target programs are equivalent.

In Chapter 6 we present Avenir, an automated synthesis tool that translates

configs in an equivalence-preserving way. Importantly, our algorithm is incremen-

tal, which allows it to be fast and avoid significant recomputation work when the

configurations get sizable. Alongside formal proofs of correctness, our evaluation on

handcrafted benchmarks, industrial programs, and microbenchmarks shows that

Avenir is scalable and expressive.

However, as with any synthesis tool, there will be times when Avenir cannot find

a solution in a reasonable amount of time—even when one exists. So some degree of
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manual intervention is desirable. Further, Avenir’s synchronization only works in

one direction, and there are on-switch gadgets that can modify the configurations

unbeknownst to the control plane.

The final chapter, Chapter 7 provides a semantic framework for reasoning about

synchronizing pairs of reconfigurable programs. Synthesizing decades of work in

bidrectional programming [50] and relational hoare logic [16], we propose rela-

tional hoare lenses (RHLenses), which allow us to reason about relational program

properties, like equivalence, in the presence of synchronization code—the lenses.

Indeed, relational hoare lenses has more general applications than just synchroniz-

ing network dataplanes, including in security, databases, and operating systems,

but for this thesis we focus on this networking application, showing that we can

use RHLenses to model the handcrafted benchmarks we used to evaluate Avenir.

1.4 Summary of Contributions

We summarize the contributions of this thesis as follows:

• Chapter 3 describes SafeP4, a domain-specific language for programmable

data planes in which all packet data is guaranteed to have a well-defined

meaning and satisfy essential safety guarantees. SafeP4 is equipped with a

formal semantics and a static type system that statically guarantees header

validity—a common source of safety bugs, according to our analysis of real-

world P4 programs. Statically ensuring header validity is challenging because

the set of valid headers can be modified at runtime, making it a dynamic

program property. Our type system achieves static safety by using a form of

path-sensitive reasoning that tracks dynamic information from conditional
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statements, routing tables, and the control plane. Our evaluation shows

that SafeP4’s type system can effectively eliminate common failures in many

real-world programs.

• Chapter 5 describes the first algorithm for computing precise ci-specs for

network data planes. Our specifications are designed to be efficiently mon-

itorable—concretely, checking that a fixed configuration satisfies a ci-spec

can be done in polynomial time. Our algorithm, based on modular program

instrumentation, quantifier elimination, and a path-based analysis, is more

expressive than prior work, and is applicable to practical network programs.

We describe an implementation and show that ci-specs computed by our tool

are useful for finding real bugs in real-world data plane programs.

• Chapter 6 describes Avenir, a synthesis tool that automatically generates

control-plane operations to ensure uniform behavior across a variety of data

planes. Our approach uses counter-example guided inductive synthesis and

sketching, adding network-specific optimizations that exploit domain insights

to accelerate the search. We prove that Avenir’s synthesis algorithm gener-

ates correct solutions and always finds a solution, if one exists. We have built

a prototype implementation of Avenir using OCaml and Z3 and evaluated

its performance on realistic scenarios for the ONOS SDN controller and on a

collection of benchmarks that illustrate the cost of retargeting a control plane

from one pipeline to another. Our evaluation demonstrates that Avenir can

manage data plane heterogeneity with modest overheads

• Chapter 7 proposes a new framework for synchronizing configurable pro-

grams, called Relational Hoare Lenses (RHLenses). As the name suggests,

this framework can be seen as the marriage of two apparently unrelated lines

of work: one focused on the design of bidirectional programming constructs
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and the other focused on logical tools for reasoning about pairs of programs.

The combination of these two approaches is both elegant and powerful. As

we will show in this paper, RHLenses neatly generalize prior work on re-

lational program logics, and we believe they can be used to solve practical

problems as well.
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CHAPTER 2

DATA PLANE PROGRAMMING

Luck is a very thin wire between

survival and disaster, and not

many people can keep their

balance on it.

Hunter S. Thompson

Before we can get into verified configuration, we need to develop a working

model of data plane programming. As our guide, we’ll use the de facto industry

standard data plane programming language called P4. Rather than model P4’s

full complexity, we’ll focus primarily on the core constructs of the language related

to its interface with the control plane.

P4 is a domain-specific language designed for processing packets—i.e., arbitrary

sequences of bits that can be divided into (i) a set of pre-determined headers

that determine how the packet will be forwarded through the network, and (ii)

a payload that encodes application-level data. P4 is designed to be protocol-

independent, which means it handles both packets with standard header formats

(e.g., Ethernet, IP, TCP, etc.) as well as packets with custom header formats

defined by the programmer. Accordingly, a P4 program first parses the headers

in the input packet into a typed representation. Next, it uses a match-action

pipeline to compute a transformation on those headers—e.g., modifying fields,

adding headers, or removing them. Finally, a deparser serializes the headers back

into a packet, which can be output to the next device. A depiction of this abstract

forwarding model is shown in Figure 2.1.
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Parser Deparser
Match
Action

Figure 2.1: Abstract forwarding model.

The match-action pipeline relies on a data structure called a match-action

table, which encodes conditional processing. More specifically, the table first looks

up the values being tested against a list of possible entries, and then executes

a further snippet of code depending on which entry (if any) matched. However,

unlike standard conditionals, the entries in a match-action table are not known at

compile-time. Rather, they are inserted and removed at run-time by the control

plane, which may be logically centralized (as in a software-defined network), or it

may operate as a distributed protocol (as in a conventional network).

The rest of this section describes P4’s typed representation, how the parsers,

and deparsers convert between packets and this typed representation, and how

control flows through the match-action pipeline.

Header Types and Instances Header types specify the internal represen-

tation of packet data within a P4 program. For example, the first few lines of the

following snippet of code:

header ethernet_t {
dstAddr: bit <48>;
srcAddr: bit <48>;
etherType: bit <16>;

}
struct headers {

ethernet_t ethernet;
ethernet_t inner_ethernet;

}

declare a type (ethernet t) for the Ethernet header with fields dstAddr, srcAddr,
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eth

vlan

ipv4

ethernet vlan ipv40x8100 0x0800

ethernet vlan0x8100 *

ethernet ipv40x0800

ethernet *

Packet Header Formats

Parse Graph

state start {
return parse_eth;

}
state parse_eth {

pkt.extract(hdr.ethernet);
return select(latest.etherType)

{
0x8100 : parse_vlan;
0x0800 : parse_ipv4;
default: accept;
}

}
state parse_vlan {

pkt.extract(hdr.vlan)
return select(latest.etherType)

{
0x0800: parse_ipv4;
default: accept;

}
}
state parse_ipv4 {

pkt.extract(hdr.ipv4);
return accept;

}

Figure 2.2: (Left) Header formats and parse graph that extracts an Ethernet header
optionally followed by VLAN and/or IPv4 headers. (Right) P4 code implementing
the same parser.

and etherType. The type of each field is provided after the colon. While P4 has

a wide variety of types from strings, structs, to integers, we’ll focus on fixed-

width bitvectors, which are the core of the packet-processing logic. Here bit<n>

is the type of a bitvector comprising n bits. The struct called header declares two

ethernet t instances (ethernet and inner ethernet) with global scope. Note

that ordinary packets usually have a single Ethernet header, but a tunneling pro-

tocol might maintain a second header for encapsulated packets.

Further, each header is equipped with a validity bit that can be read via the

method isValid(), assigned to true with setValid() and setInvalid(). The

P4 language specification says that when a header h is invalid, the value returned

by reading any any field in that header, e.g. h.f , is undefined.
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table forward {
key = {
ipv4.isValid () : exact

;
ipv4.isValid () : exact

;
ipv4.dstAddr: ternary;

}
actions = {
nop;
next_hop;
remove;

}
default_action : nop();

}

Runtime Contents of forward

Pattern Action
ipv4 vlan ipv4.dstAddr Name Data

1 0 10.0.0.* next hop s, d
0 1 * remove

Figure 2.3: P4 tables. forward reads the validity of the ipv4 and vlan header
instances and the dstAddr field of the ipv4 header instance, and calls one of its
actions: nop, next hop, or remove.

Parsers A P4 parser specifies the order in which headers are extracted from

the input packet using a simple abstraction based on finite state machines. Extract-

ing into an header instance populates its fields with the requisite bits of the input

packet and marks the instance as valid. The code within each state may extract

bits from the input packet, modify header instances, conditionally branch, and

transition either to another state, to the ingress pipeline (indicated by accept),

which begins the match-action processing, or to the reject state which indicates

that the packet should be dropped. Figure 2.2 depicts a visual representation of a

parse graph for three common headers: Ethernet, VLAN, and IPv4. The instance

ethernet is extracted first, optionally followed by a vlan instance, or an ipv4

instance, or both.

Tables Interface with the Control Plane The bulk of the processing

for each packet in a P4 program is performed using match-action tables that are

populated by the control plane. A table (such as the one in Figure 2.3) is defined

in terms of (i) the data it reads (indicated by the key clause) to determine a

matching entry (if any), (ii) the actions it may execute, and (iii) an optional
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default action it executes if no matching entry is found.

The behavior of a table depends on the entries installed at run-time by the

control-plane. Each table entry contains a match pattern, an action, and action

data. Intuitively, the match pattern specifies the bits that should be used to

match values, the action is the name of a pre-defined function (such as the ones in

Figure 2.4), and the action data are the arguments to that function. Operationally,

to process a packet, a table first scans its entries to locate the first matching entry.

If such a matching entry is found, the packet is said to “hit” in the table, and

the associated action is executed. Otherwise, if no matching entry is found, the

packet is said to “miss” in the table, and the default action (which is a no-op if

unspecified) is executed.

A table also specifies the match-kind that describes how each header field should

match with the patterns provided by the control plane. For the purposes of this

dissertation, we only consider exact and ternary, as ternary matches suffice to

implement all other non-exact matches. An exact match requires the bits in

the packet be exactly equivalent to the bits in the controller-installed pattern. A

ternary match allows wildcards in arbitrary positions, so the controller-installed

pattern 0* would match bit sequences 00 and 01.

For example, in Figure 2.3, the forward table is shown populated with two

rules. The first rule tests whether ipv4 is valid, vlan is invalid, and the first 24

bits of ipv4.srcAddr equal 10.0.0, and then applies next hop with arguments s

and d (which stand for source and destination addresses). The second rule checks

that ipv4 is invalid, then that vlan is valid, and skips evaluating the value of

ipv4.dstAddr (since it is wildcarded), to finally apply the remove action.
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action next_hop(src , dst) {
hdr.ethernet.srcAddr = src;
hdr.ethernet.dstAddr = dst;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

action remove () {
hdr.ethernet.etherType =

vlan.etherType;
hdr.vlan.setInvalid ();

}

Figure 2.4: P4 actions.

Actions are functions containing sequences of primitive commands that perform

operations such as adding and removing headers, assigning a value to a field, adding

one field to another, etc. For example, Figure 2.4 depicts two actions: the next hop

action updates the Ethernet source and destination addresses with action data from

the controller; and the remove action copies EtherType field from the vlan header

instance to the ethernet header instance and invalidates the vlan header.

The next hop action assigns its argument src, which is provided by the con-

trol plane, to the srcAddr field of the ethernet instance while remove copies

the etherType field from the vlan instance to the ethernet instance, and then

removes the vlan instance. Assignments behave as expected: evaluating e and

storing the result in the header field h.f—e.g., next hop decrements ipv4.ttl by

one and saves the result. The setInvalid() header method invalidates its header,

behaving like a no-op on invalid headers.

Data Plane Control Blocks P4 control blocks use standard control-flow

constructs to execute a pipeline of match-action tables. They manage the order

and conditions under which each table is executed. Within a control block, the

apply command executes a table, and conditionals branch on a boolean expression

such as the validity of a header instance.
apply {

if(hdr.ipv4.isValid () hdr.vlan.isValid) { forward.apply(); }
}

The above code applies the forward table if one of ipv4 or vlan is valid.
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Deparser The deparser reassembles the final output packet, after all pro-

cessing has been done by serializing each valid header instance in some order. The

emit function serializes the packet into its bits, and then appends it to the out-

going packet, pkt. The following code exemplifies code that emits Ethernet, IPv4

and TCP headers, in that order.

pkt.emit(hdr.ethernet); pkt.emit(hdr.ipv4); pkt.emit(hdr.tcp);

2.1 Data Plane Programs Have Bugs

Having introduced the basic features of P4, we now present five categories of bugs

found in open-source programs that arise due to reading and writing invalid head-

ers. There is one category for each of the following syntactic constructs: (1) parsers,

(2) controls, (3) table reads, (4) table actions, and (5) default actions.

To identify the bugs we surveyed a benchmark suite of 15 research and industrial

P4 programs that are publicly available on GitHub and compile to the BMv2 [82]

backend. Later, in Section 6.6, we will report the number of occurrences of each

of these categories in our benchmark suite detected by our approach.1

2.1.1 Parser Bugs

The first class of errors is due to the parser being too conservative about dropping

malformed packets, which increases the set of headers that may be invalid in the

control pipeline. In most programs, the parser chooses which headers to extract

1The examples we use in this chapter are from P414, due to the limited number of P416
programs available when this work was completed. Nonetheless the issues we address also persist
in the latest version of the language, P416. We use P416 syntax for modernity.
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/* UNSAFE */
state parse_ethernet {
pkt.extract(ethernet);
transition

select(ethernet.etherType) {
0x0800 : parse_ipv4;
default : accept;

}
}
state parse_ipv4 {
pkt.extract(ipv4);
transition
select(ipv4.protocol) {

6 : parse_tcp;
default : accept;

}
}

/* SAFE */
state parse_ethernet {
extract(ethernet);
transition
select(ethernet.etherType) {

0x0800 : parse_ipv4;
default : reject;

}
}
state parse_ipv4 {
pkt.extract(ipv4);
transition

select(ipv4.protocol) {
6 : parse_tcp;

default : reject;
}

}

state parse_tcp {
pkt.extract(tcp);
transition accept;

}

apply {
if(tcp.syn == 1 and ...) {...}

}

Figure 2.5: Left: unsafe code in NetHCF; Right: our type-safe fix; Bottom:
common code.

based on the fields of previously-extracted headers using P4’s version of a switch

statement, select. Programmers often fail to handle packets that fall through to

the default case of these select statements.

An example from the NetHCF [120, 8] codebase illustrates this bug. NetHCF

is a research tool designed to combat TCP spoofing. As shown in Figure 2.5, the

parser handles TCP packets in parse ipv4 and redirects all other packets to the

ingress control. Unfortunately, the ingress control (bottom right) does not check

whether tcp is valid before accessing tcp.syn to check whether it is equal to 1.

This is unsafe since tcp is not guaranteed to be valid even though it is required to

be valid in the ingress control.

To fix this bug, we can simply reject the failed packets. In general, we may

want to define a parser exception, unsupported, with a specific handler for unex-

pected packets, thereby protecting the ingress from having to handle unexpected

packets. Note however, that this fix might not be the best solution, since it alters
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/* UNSAFE */
apply {

process_cache ();
process_value ();

ipv4_route.apply ();
}

/* SAFE */
apply{

if(nc_hdr.isValid ()) {
process_cache ();
process_value ();

}
ipv4_route.apply ();

}

control process_cache {
check_cache_exist.apply ();
...

}

table check_cache_exist {
key = { nc_hdr.key : exact }
actions = { ... }

}

Figure 2.6: Left: unsafe code in NetCache; Right: our type-safe fix; Bottom:
Common code

the original behavior of the program. However, without knowing the program-

mer’s intention, it is generally not possible to automatically repair a program with

undefined behavior.

2.1.2 Control Bugs

Another common bug occurs when a table is executed in a context in which the

instances referenced by that table are not guaranteed to be valid. This bug can

be seen in the open-source code for NetCache [63], a system that uses P4 to

implement a load-balancing cache. The parser for NetCache reserves a specific

port (8888) to handle its special-purpose traffic, a condition that is built into the

parser, which extracts nc hdr (i.e., the NetCache-specific header) only when

UDP traffic arrives from port 8888. Otherwise, it performs standard L2 and L3

routing. Unfortunately, the ingress control node (Figure 2.6) tries to access

nc hdr before checking that it is valid. Specifically, the reads declaration for

the check cache exists table, which is executed first in the ingress pipeline,

presupposes that nc hdr is valid. The invocation of the process value table (not

shown) contains another instance of the same bug.
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To fix these bugs, we can wrap the calls to process cache and process value

in an conditional that checks the validity of the header nc hdr. This ensures that

nc hdr is valid when process cache refers to it.

2.1.3 Table Reads Bugs

A similar bug arises in programs that contain tables that first match on the validity

of certain header instances before matching on the fields of those instances. The

advantage of this approach is that multiple types of packets can be processed in

a single table, which saves memory. However, if implemented incorrectly, this

programming pattern can lead to a bug, in which the reads declaration matches

on bits from a header that may not be valid!

The switch.p4 program exhibits an exemplar of this bug; it is a “realistic

production switch” developed by Barefoot Networks (which has since been pur-

chased by Intel), meant to be used “as-is, or as a starting point for more advanced

switches” [68].

An archetypal example of table reads bugs is the port vlan mapping table

of switch.p4 (Figure 2.7). This table is invoked in a context where it is not

known which of the VLAN tags is valid, despite containing references to both

vlan tag [0] and vlan tag [1] in the reads declaration. Adroitly, the program-

mer has guarded the references to vlan tag [i].vid with keys that test the va-

lidity of vlan tag [i], for i = 1, 2. Unfortunately, as written, it is impossible for

the control plane to install a rule that will always avoid reading the value of an

invalid header. The first match will check whether the vlan tag [0] instance is

invalid, which is safe. However, the very next match will try to read the value of
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/* UNSAFE */
table port_vlan_mapping {
key = {
vlan_tag_ [0]. isValid () : exact

;
vlan_tag_ [0]. vid : exact;
vlan_tag_ [1]. isValid () : exact

;
vlan_tag_ [1]. vid : exact;

} ...
}

/* SAFE */
table port_vlan_mapping {
key = {
vlan_tag_ [0]. isValid : exact;
vlan_tag_ [0]. vid : ternary;
vlan_tag_ [1]. isValid : exact;
vlan_tag_ [1]. vid : ternary;

} ...
}

Figure 2.7: Left: a table in switch.p4 with unprotected conditional reads; Right:
our type-safe fix.

the vlan tag [0].vid field, even when the instance is invalid! This attempt to

access an invalid header results in undefined behavior, and is therefore a bug.

It is worthy to note that this code is not actually buggy on some targets—

in particular, on targets where invalid headers are initialized with 0. However,

0-initialization is not prescribed by the language specification, and therefore this

code is not portable across other targets.

The naive solution to fix this bug is to refactor the table into four different

tables (one for each combination of validity bits) and then check the validity of each

header before the tables are invoked. While this fix is perfectly safe, it can result

in a combinatorial blowup in the number of tables, which is clearly undesirable

both for efficiency reasons and because it requires modifying the control plane.

Fortunately, rather than factoring the table into four tables, we can replace

the exact match-kinds with ternary match-kinds, which permit matching with

wildcards. In particular, the control plane can install rules that match invalid

instances using an all-wildcard patterns, which is safe.

In order for this solution to typecheck, we need to assume that the control

plane is well-behaved—i.e. that it will install wildcards for the ternary matches
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whenever the header is invalid. In our implementation, we print a warning when-

ever we make this kind of assumption so that the programmer can confirm that

the control plane is well-behaved.

2.1.4 Table Action Bugs

Another prevalent bug arises when distinct actions in a table require different (and

possible mutually exclusive) headers to be valid. This can lead to two problems:

(i) the control plane can populate the table with unsafe match-action rules, and

(ii) there may be no validity checks that we can add to the control to make all of

the actions typecheck.

The fabric ingress dst lkp table (Figure 2.8) in switch.p4 provides an ex-

ample of this misbehavior. The fabric ingress dst lkp table reads the value of

fabric hdr.dstDevice and then invokes one of several actions: term cpu packet,

term fabric unicast packet, or term fabric multicast packet. Respec-

tively, these actions require the fabric hdr cpu, fabric hdr unicast, and

fabric hdr multicast (respectively) headers to be valid. Unfortunately the va-

lidity of these headers is mutually exclusive.2

Since fabric hdr cpu, fabric hdr unicast, and fabric hdr multicast are

mutually exclusive, there is no single context that makes this table safe. The

only facility the table provides to determine which action should be called is

fabric hdr.dstDevice. However, the P4 program doesn’t establish a relation-

ship between the value of fabric hdr.dstDevice and the validity of any of these

three header instances. So, the behavior of this table is only well-defined when

2There are other actions in the real fabric ingress dst lkp, but these three actions demon-
strate the core of the problem.
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/* UNSAFE */
table fabric_ingress_dst_lkp {
key = {
fabric_hdr.dstDevice : exact;

}

actions = {
term_cpu_packet;
term_fabric_unicast_packet;
term_fabric_multicast_packet;

}
}

/* SAFE */
table fabric_ingress_dst_lkp {
reads {
fabric_hdr.dstDevice : exact;
fabric_hdr_cpu.isValid ()

: exact;
fabric_hdr_unicast.isValid ()

: exact;
fabric_hdr_multicast.isValid ()

: exact;
}
actions {
term_cpu_packet;
term_fabric_unicast_packet;
term_fabric_multicast_packet;

}
}

Figure 2.8: Left: unsafe code in switch.p4; Right: our type-safe fix.

the input packets are well-formed, an unreasonable expectation for real switches,

which may receive any sequence of bits “on the wire.”

We fix this bug by including validity matches in the key declaration, as shown

in Figure 2.8. As in Section 2.1.3, this solution avoids combinatorial blowup and

extensive control plane refactoring.

In order to type-check this solution, we need to make an assumption about

the way the control plane will populate the table. Concretely, if an action a only

typechecks if a header h is valid, and h is not necessarily valid when the table is

applied, we assume that the control plane will only call a if h is matched as valid.

For example, fabric hdr cpu is not known to be valid when (the fixed version of)

fabric ingress dst lkp is applied, so we assume that the control plane will only

call action term cpu packet when fabric hdr cpu is matched as valid. Again,

our implementation prints these assumptions as warnings to the programmer, so

they can confirm that the control plane will satisfy these assumptions.
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/* UNSAFE */
table add_value_header_1 {
actions {
add_value_header_1_act;

}

}

/* SAFE */
table add_value_header_1 {
actions {
add_value_header_1_act;

}
default_action :

add_value_header_1_act ();
}

Figure 2.9: Left: unsafe code in NetCache; Right: our type-safe fix.

2.1.5 Default Action Bugs

Finally, default action bugs occur when the programmer incorrectly assumes that

a table performs some action when a packet misses. The NetCache program

(described in Section 2.1.2) exhibits an example of this bug, too. The bug is

shown in Figure 2.9, where the table add value header 1 is expected to make the

nc value 1 header valid, which is done in the add value header 1 act action.

The control plane may refuse to add any rules to the table, which would cause

all packets to miss, meaning that the add value header 1 act action would never

be called and nc value 1 may not be valid. To fix this error, we simply set the

default action for the table to add value header 1 act, which will force the table

to remove the header no matter what rules the controller installs.

The preponderance of real bugs in real P4 programs, for such a simple property,

header validity, suggests the need for a lightweight static analysis tool that permits

engineers to verify the absence of such bugs. We present such a system in the

following chapter,over the course of which the need for careful consideration of the

control plane interface will become clear.
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CHAPTER 3

STATIC DATA PLANE ANALYSIS AND CONTROL

ASSUMPTIONS

Over the past decade, there has been a shift to more flexible platforms in which

the functionality of the network is specified in software. Early efforts related to

software-defined networking (SDN) [76, 25], focused on the control plane software

that computes routes, balances load, and enforces security policies, and modeled

the data plane as a simple pipeline operating on a fixed set of packet formats.

However, there has been recent interest in allowing the functionality of the data

plane itself to be specified as a program—e.g., to implement new protocols, make

more efficient use of hardware resources, or even relocate application-level func-

tionality into the network [63, 62]. In particular, the P4 language [20] enables the

functionality of a data plane to be programmed in terms of declarative abstractions

such as header types, packet parsers, match-action tables, and structured control

flow that a compiler maps down to an underlying target device.

Unfortunately, while a number of P4’s features were clearly inspired by designs

found in modern languages, the central abstraction for representing packet data—

header types—lacks basic safety guarantees. To a first approximation, a P4 header

type can be thought of as a record with a field for each component of the header.

For example, the header type for an IPv4 packet, would have a 4-bit version field,

an 8-bit time-to-live field, two 32-bit fields for the source and destination addresses,

and so on.

According to the P4 language specification, an instance of a header type may

either be valid or invalid: if the instance is valid, then all operations produces a

defined value, but if it is invalid, then reading or writing a field yields an undefined
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result. In practice, programs that manipulate invalid headers can exhibit a variety

of faults including dropping the packet when it should be forwarded, or even leaking

information from one packet to the next. In addition, such programs are also not

portable, since their behavior can vary when executed on different targets.

The choice to model the semantics of header types in an unsafe way was in-

tended to make the language easier to implement on high-speed routers, which

often have limited amounts of memory. A typical P4 program might specify be-

havior for several dozen different protocols, but any particular packet is likely to

contain only a small handful of headers. It follows that if the compiler only needs

to represent the valid headers at run-time, then memory requirements can be re-

duced. However, while it may have benefits for language implementers, the design

is a disaster for programmers—it repeats Hoare’s “mistake,” and bakes an unsafe

feature deep into the design of a language that has the potential to become the

de-facto standard in a multi-billion-dollar industry.

This chapter investigates the design of a domain-specific language for pro-

grammable data planes in which all packet data is guaranteed to have a well-

defined meaning and satisfy basic safety guarantees. In particular, this chapter

describes SafeP4, a language with a precise semantics and a static type system

that can be used to obtain guarantees about the validity of all headers read or

written by the program. Although the type system is mostly based on standard

features, there are several aspects of its design that stand out. First, to facili-

tate tracking dependencies between headers—e.g. if the TCP header is valid, then

the IPv4 will also be valid—SafeP4 has an expressive algebra of types that tracks

validity information at a fine level of granularity. Second, to accommodate the

growing collection of extant P4 programs with only modest modifications, SafeP4
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uses a path-sensitive type system that incorporates information from conditional

statements, forwarding tables, and the control plane to precisely track validity.

To evaluate our design for SafeP4, we formalized the language and its type

system in a core calculus and proved the usual progress and preservation the-

orems. We also implemented the SafeP4 type system in an OCaml prototype,

P4Check, and applied it to a suite of open-source programs found on GitHub such

as switch.p4, a large P4 program that implements the features found in modern

data center switches (specifically, it includes over four dozen different switching,

routing, and tunneling protocols, as well as multicast, access control lists, among

other features). We categorize common failures and, for programs that fail to

type-check, identify the root causes and apply repairs to make them well-typed.

We find that most programs can be repaired with low effort from programmers,

typically by applying a modest number of simple repairs.

Overall, the main contributions of this chapter are as follows:

• We propose SafeP4, a type-safe enhancement of the P4 language that elimi-

nates all errors related to header validity.

• We formalize the syntax and semantics of SafeP4 in a core calculus and prove

that the type system is sound.

• We implement our type checker in an OCaml prototype, P4Check.

• We evaluate our type system empirically on over a dozen real-world P4 pro-

grams and identify common errors and repairs.
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3.1 A “Featherweight” P4

Our primary design goal for SafeP4 is to develop a core calculus that models

the main features of P4, while guaranteeing that all data from packet headers is

manipulated in a safe and well-defined manner. We draw philosophical inspiration

from Featherweight Java [58]—i.e., we model the essential features of P4, but

prune away unnecessary complexity. The result is a minimal calculus that is easy

to reason about, but can still express a large number of real-world data plane

programs. For instance, P4 and SafeP4 both achieve protocol independence by

allowing the programmer to specify the types of packet headers and their order in

the bit stream. Similarly, SafeP4 mimics P4’s use of tables to interface with the

control-plane and decide which actions to execute at run-time.

So what features does SafeP4 prune away? We omit a number of constructs

that are secondary to how packets are processed—e.g., field list calculations,

parser exceptions, counters, meters, action profiles, etc. It would be rel-

atively straightforward to add these to the calculus—indeed, most are already

handled in our prototype—at the cost of making it more complicated. We also

modify or distill several aspects of P4. For instance, P4 separates the parsing

phase and the control phase. Rather than unnecessarily complicating the syntax

of SafeP4, we allow the syntactic objects that represent parsers and controls to

be freely mixed. We make a similar simplification in actions, informally enforcing

which primitive commands can be invoked within actions (e.g., field modification,

but not conditionals).

Another challenge arises in trying to model core behaviors of P4, in that they

each have different type systems and behaviors for evaluating expressions. Our

calculus abstracts away expression typing and syntax variants by assuming that
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we are given a set of constants k that can represent values like 0 or True, or

operators such as && and ?:. We also assume that these operators are assigned

appropriate (i.e., sound) types. With these features in hand, one can instantiate

our type system over arbitrary constants.

Another departure from P4 is related to our add command, which presents a

complication for our expression types. The analogous setValid() header method

in P4, which simply modifies the validity bit, without initializing any of the fields.

This means that accessing any of the header fields before they have been manually

initialized reads a non-deterministic value. Our calculus neatly sidesteps this issue

by defining the semantics of the add(h) primitive to initialize each of the fields of

h to a default value. We assume that along with our type constants there is a

function init that accepts a header type η and produces a header instance of type η

with all fields set to their default value. Note that we could have instead modified

our type system to keep track of the definedness of header fields as well as their

validity. However, for simplicity we choose to focus on header validity.

The portion of our type system that analyzes header validity, requires some

way of keeping track of which headers are valid. Naively, we can keep track of a

set of which headers are guaranteed to be valid on all program paths, and reject

programs that reference headers not in this set. However, this coarse-grained

approach would lead to a large number of false positives. For instance, the parser

shown in Figure 2.2 parses an ethernet header and then either boots to ingress

or parses an ipv4 header and then either proceeds to the ingress or parses an

vlan header. Hence, at the ingress node, the only header that is guaranteed to

be valid is the ethernet header. However, it is certainly safe to write an ingress

program that references the vlan header after checking it was valid. To reflect
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this in the type system we introduce a special construct called valid(h) c1 else c2,

which executes c1 if h is valid and c2 otherwise. When we type check this command,

following previous work on occurrence typing [113], we check c1 with the additional

fact that h is valid, and we check c2 with the additional fact that h is not valid.

Even with this enhancement, this type system would still be overly restrictive.

To see why, let us augment the parser from Figure 2.2 with the ability to parse

TCP and UDP packets: after parsing the ipv4 header, the parser can optionally

extract the vlan, tcp, or udp header and then boot control flow to ingress. Now

suppose that we have a table tcp table that refers to both ipv4 and tcp in its

reads declaration, and that tcp table is (unsafely) applied immediately in the

ingress. Because the validity of tcp implies the validity of ipv4, it should be

safe to check the validity of tcp and then apply tcp table. However, using the

representation of valid headers as a set, we would need to ascertain the validity of

ipv4 and of tcp.

To solve this problem, we enrich our type representation to keep track of depen-

dencies between headers. More specifically, rather than representing all headers

guaranteed to be valid in a set, we use a finer-grained representation—a set of sets

of headers that might be valid at the current program point. For a given header

reference to be safe, it must to be a member of all possible sets of headers—i.e., it

must be valid on all paths through the program that reach the reference.

Overall, the combination of an expressive language of types and a simple ver-

sion of occurrence typing allows us to capture header dependencies and statically

analyze whether a program satisfies the header validity property.

The final challenge with formally modelling P4 lies in its interface with the
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control-plane, which populates the tables and provides arguments to the actions.

While the control-plane’s only methodology for managing switch behavior is to

populate the match-action tables with forwarding entries, it is perfectly capable

of producing undefined behavior. However, if we assume that the controller is

well-intentioned, we can prove the safety of more programs.

In our formalization, to streamline the presentation, we model the control plane

as a function CA(t,H) = (ai, v̄) that takes in a table t and the current headers H

and produces the action to call ai and the (possibly empty) action data arguments

v̄. We also use a function CV(t) = S̄ that analyzes a table t and produces a list of

sets of valid headers S̄, one set for each action, that can be safely assumed valid

when the entries are populated by the control plane. From the table declaration

and the header instances that can be assumed valid, based on the match-kinds, we

can derive a list of match key expressions ē that must be evaluated when the table

is invoked. Together, these functions model the run-time interface between the

switch and the controller. In order to prove progress and preservation, we assume

that CV and CA satisfy three simple correctness properties: (1) the control plane

can safely install table entries that never read invalid headers, (2) the action data

provided by the control plane has the types expected by the action, and (3) the

control plane will only assume valid headers for an action that are valid for a given

packet.

3.1.1 Syntax

The syntax of SafeP4 is shown in Figure 3.1. To lighten the notation, we write x̄

as shorthand for a (possibly empty) sequence x1, ..., xn.
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Commands
c ::=
| extract(h) extraction
| emit(h) deparsing
| c1; c2 sequence∗

| if(e) c1 else c2 conditional
| valid(h) c1 else c2 validity
| t.apply() application
| skip skip
| add(h) addition∗

| remove(h) removal∗

| h.f = e modification∗

Actions
a ::= λx̄.c action

Expressions
e ::=
| v values
| h.f header field
| x variable
| kn constant

Declarations
d ::=

| t(h, (e,m), a) table

| η {f : τ} header type
| h 7→ η instantiation

Match Kinds Constants
m ∈ {exact, ternary} k ∈ K
Program Values
P ::= (d̄, c) v ∈ V

Header Types
Θ ::=

| 0 contradiction
| 1 empty
| h instance
| Θ1 ·Θ2 concatenation
| Θ1 + Θ2 choice

Action Types Expression Types
α ::= τ̄ → Θ τ ::= Bool

| τ̄ → τ
| · · ·

Figure 3.1: Syntax of SafeP4

A SafeP4 program consists of a sequence of declarations d̄ and a command c.

The set of declarations includes header types, header instances, and tables. Header

type declarations describe the format of individual headers and are defined in terms

of a name and a sequence of field declarations. The notation f : τ indicates that

field f has type τ . We let η range over header types. A header instance declaration

assigns a name h to a header type η. The map HT encodes the (global) mapping

between header instances and header types. Table declarations t(h, (e,m), a), are

defined in terms of a sequence of valid-match header instances h, a sequence of

match-key expressions (e,m) read in the table, where e is an expression and m is

the match-kind used to match this expression, and a sequence of actions ā. The
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notation t.valids denotes the valid-match instances, t.reads denotes the expressions,

and t.actions denotes the actions.

Actions are written as (uncurried) λ-abstractions. An action λx̄. c declares a

(possibly empty) sequence of parameters, drawn from a fresh set of names, which

are in scope for the command c. The run-time arguments for actions (action data)

are provided by the control plane. Note that we artificially restrict the commands

that can be called in the body of the action to addition, removal, modification and

sequence; these actions are identified with an asterisk in Figure 3.1.

The calculus provides commands for extracting (extract), creating (add), re-

moving (remove), and modifying (h.f = e) header instances. The emit command

is used in the deparser and serializes a header instance back into a bit sequence

(emit). The if-statement conditionally executes one of two commands based on

the value of a boolean condition. Similarly, the valid-statement branches on the

validity of h. Table application commands (t.apply()) are used to invoke a table t

in the current state. The skip command is a no-op.

The only built-in expressions in SafeP4 are variables x and header fields, written

h.f . We let v range over values and assume a collection of n-ary constant operators

kn ∈ K.

For simplicity, we assume that every header referenced in an expression has a

corresponding instance declaration. We also assume that header instance names h,

header type names η, variable names x, and table names t are drawn from disjoint

sets of names h,e,v, and t respectively and that each name is declared only once.
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3.1.2 Type System

SafeP4 provides two main kinds of types, basic types τ and header types Θ as

shown in Figure 3.1. We assume that the set of basic types includes booleans (for

conditionals) as well as tuples and function types (for actions).

A header type Θ represents a set of possible co-valid header instances. The type

0 denotes the empty set. This type arises when there are unsatisfiable assumptions

about which headers are valid. The type 1 denotes the singleton denoting the

empty set of headers. It describes the type of the initial state of the program. The

type h denotes a singleton set, {{h}}—i.e., states where only h is valid. The type

Θ1 · Θ1 denotes the set obtained by combining headers from Θ1 and Θ2—i.e., a

product or concatenation. Finally, the type Θ1 + Θ2 denotes the union of Θ1 or

Θ2, which intuitively represents an alternative.

The semantics of header types, JΘK, is defined by the equations in Figure 3.2.

Intuitively, each subset represents one alternative set of headers that may be valid.

For example, the header type eth ·(ipv4+1) denotes the set {{eth, ipv4}, {eth}}.

To formulate the typing rules for SafeP4, we also define a set of operations

on header types: Restrict, NegRestrict, Includes, Remove, and Empty. The

restrict operator Restrict Θ h recursively traverses Θ and keeps only those choices

in which h is contained, mapping all others to 0. Semantically this has the effect of

throwing out the subsets of JΘK that do not contain h. Dually NegRestrict Θ h

produces only those choices/subsets where h is invalid. Includes Θ h traverses

Θ and checks that h is always valid. Semantically this says that h is a member

of every element of JΘK. Remove Θ h removes h from every path, which means,

semantically that it removes h from ever element of JΘK. Finally, Empty Θ checks
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JΘK ⊆ P(Header)

J0K = {}
J1K = {{}}
JhK = {{h}}

JΘ1 ·Θ2K = JΘ1K • JΘ2K
JΘ1 + Θ2K = JΘ1K ∪ JΘ2K

F(h, fi) = τi Field lookup

A(a) = λx̄ : τ̄ . c Action lookup

CA(t,H) = (ai, v̄) Control-plane actions

CV(t) = S̄ Control-plane validity

H(e) = h̄ Referenced Header instances

maskable(t, e, exact) , false

maskable(t, e, ternary) , H(e) ⊆ t.valids

Figure 3.2: Semantics of header types (left) and auxiliary functions (right).

whether Θ denotes the empty set. We can lift these operators to operate on sets

of headers in the obvious way.

Typing Judgement

The typing judgement has the form Γ ` Θ : c Z⇒ Θ′, which means that in variable

context Γ, if c is executed in the header context Θ, then a header instance type Θ′

is assigned. Intuitively, Θ encodes the sets of headers that may be valid when type

checking a command. Γ is a standard type environment which maps variables x

to type τ . If there exists Θ′ such that Γ ` Θ : c Z⇒ Θ′, we say that c is well-typed

in Θ.

The typing rules rely on several auxiliary definitions shown in Figure 3.2. The

field type lookup function F(h, fi) returns the type assigned to a field fi in header

h by looking it up from the global header type declarations via the header instance

declarations. The action lookup function A(a) returns the action definition λx̄ :

τ̄ . c for action a. Finally, the function CA(t,H) computes the run-time actions

for table t, while CV(t) computes t’s assumptions about validity. Both of these
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T-Zero
Empty Θ1

Γ ` Θ1 : c Z⇒ Θ2

T-Skip

Γ ` Θ : skip Z⇒ Θ

T-Seq

Γ ` Θ : c1 Z⇒ Θ1

Γ ` Θ1 : c2 Z⇒ Θ2

Γ ` Θ : c1; c2 Z⇒ Θ2

T-If
Γ; Θ ` e : Bool

Γ ` Θ : c1 Z⇒ Θ1

Γ ` Θ : c2 Z⇒ Θ2

Γ ` Θ : if (e) c1 else c2 Z⇒ Θ1 + Θ2

T-IfValid
Γ ` Restrict Θ h : c1 Z⇒ Θ1

Γ ` NegRestrict Θ h : c2 Z⇒ Θ2

Γ ` Θ : valid(h) c1 else c2 Z⇒ Θ1 + Θ2

T-Mod
Includes Θ h

F(h, f) = τi Γ; Θ ` e : τi

Γ ` Θ : h.f = e Z⇒ Θ

T-Extr

Γ ` Θ : extract(h) Z⇒ Θ · h

T-Emit

Γ ` Θ : emit(h) Z⇒ Θ

T-Add

Γ ` Θ : add(h) Z⇒ Θ · h

T-Rem

Γ ` Θ : remove(h) Z⇒ Remove Θ h

T-Apply
CV(t) = S̄

t.actions = ā t.reads = r̄
ē = {ej | (ej,mj) ∈ r̄ ∧ ¬maskable(t, ej,mj)}

·; Θ ` ej : τj for ej ∈ ē
Restrict Θ Si ` ai : τ̄i → Θ′i for ai ∈ ā

Γ ` Θ : t.apply() Z⇒

(∑
ai∈ā

Θ′i

)

Figure 3.3: Command typing rules for SafeP4

are assumed to be instantiated by the control plane in a way that satisfies basic

correctness properties

The typing rules for commands are presented in Figure 3.3. The rule T-Zero

gives a command an arbitrary output type if the input type is empty. It is needed

to prove preservation. The rules T-Skip and T-Seq are standard. The rule T-

If a path-sensitive union type between the type computed for each branch. The

rule T-IfValid is similar, but leverages knowledge about the validity of h. So
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the true branch c1 is checked in the context Restrict Θ h, and the false branch

c2 is checked in the context NegRestrict Θ h. The top-level output type is the

union of the resulting output types for c1 and c2. The rule T-Mod checks that h is

guaranteed to be valid using the Includes operator, and uses the auxiliary function

F to obtain the type assigned to h.f . Note that the set of valid headers does not

change when evaluating an assignment, so the output and input types are identical.

The rules T-Extr and T-Add assign header extractions and header additions the

type Θ ·h, reflecting the fact that h is valid after the command executes. Emitting

packet headers does not change the set of valid headers, which is captured by rule

T-Emit. The typing rule T-Rem uses the Remove operator to remove h from the

input type Θ. Finally, the rule T-Apply checks table applications. To understand

how it works, let us first consider a simpler, but less precise, typing rule:

t.reads = ē ·; Θ ` ei : τi for ei ∈ ē

t.actions = ā ·; Θ ` ai : τ̄i → Θ′i for ai ∈ ā

· ` Θ : t.apply() Z⇒
(∑

Θ′i

)
Intuitively, this rule says that to type check a table application, we check each

expression it reads and each of its actions. The final header type is the union

of the types computed for the actions. To put it another way, it models table

application as a non-deterministic choice between its actions. However, while this

rule is sound, it is overly conservative. In particular, it does not model the fact

that the control plane often uses header validity bits to control which actions are

executed.

Hence, the actual typing rule, T-Apply, is parameterized on a function CV(t)

that models the choices made by the control plane, returning for each action ai,

a set of headers Si that can be assumed valid when type checking ai. From the

reads declarations of the table declaration, we can derive a subset of the expressions
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Γ, x̄ : τ̄ ` Θ : c Z⇒ Θ′

Γ; Θ ` λ x̄ : τ̄ .c : τ̄ → Θ′
(T-Action)

Figure 3.4: Action typing rule for SafeP4

T-Const
typeof(k) = τ̄ → τ ′ Γ; Θ ` ei : τi

Γ; Θ ` k(ē) : τ ′

T-Var
x : τ ∈ Γ

Γ; Θ ` x : τ

T-Field
Includes Θ h F(h, f) = τ

Γ; Θ ` h.f : τ

Figure 3.5: Expression typing rules for SafeP4

read by the table—e.g., excluding expressions that can be wildcarded when certain

validity bits are false. This is captured by the function maskable(t, e,m) (defined

in Figure 3.2) , which determines whether a reads expression e with match-kind m

in table t can be masked using a wild-card. The maskable function is defined using

H(e), which returns the set of header instances referenced by an expression e.

In the example from Section 2.1.3, if an action aj is matched by the rule

(0, ∗, 0, ∗), both Sj and ej are empty.

The typing judgement for actions (Figure 3.4) is of the form Γ; Θ ` a : τ̄ → Θ,

meaning that a has type τ̄ → Θ in variable context Γ and header context Θ. Given

a variable context Γ and header type Θ, an action λx̄. c encodes a function of type

τ̄ → Θ′, so long as the body c is well-typed in the context where Γ is extended

with xi : τi for every i.

The typing rules for expressions are shown in Figure 3.5. Constants are type-

checked according to rule T-Constant, as long as each expression that is passed
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as an argument to the constant k has the type required by the typeof function.

The rule T-Var is standard.

3.1.3 Operational Semantics

We now present the small-step operational semantics of SafeP4. We define the

operational semantics for commands in terms of four-tuples 〈I, O,H, c〉, where I

is the input bit stream (which is assumed to be infinite for simplicity), O is the

output bit stream, H is a map that associates each valid header instance with a

records containing the values of each field, and c is the command to be evaluated.

The reduction rules are presented in Figure 3.6.

The command extract(h) evaluates via the rule E-Extr, which looks up the

header type in HT and then invokes corresponding deserialization function. The

deserialized header value v is added to to the map of valid header instances, H.

For example, assuming the header type η = {f : bit〈3 〉; g : bit〈2 〉; } has two fields

f and g and I = 11000B where B is the rest of the bit stream following, then

deserializeη(I ) = ({f = 110; g = 00; },B).

The rule E-Emit serializes a header instance h back into a bit stream. It

first looks up the corresponding header type and header value in the header table

HT and the map of valid headers respectively. The header value is then passed

to the serialization function for the header type to produce a bit sequence that

is appended to the output bit stream. Similarly, we assume that a serialization

function is defined for every header type, which takes the bit values of the fields of

a header value and concatenates them to produce a single bit sequence. We adopt

the semantics of P4 with respect to emitting invalid headers. Emitting an invalid
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E-Extr
HT (h) = η deserializeη(I) = (v, I ′)

〈I, O,H, extract(h)〉 → 〈I ′, O,H[h 7→ v], skip〉

E-Emit
HT (h) = η serializeη(H(h)) = B̄

〈I, O,H, emit(h)〉 → 〈I, O.B̄,H, skip〉

E-EmitInvalid
h 6∈ dom(H )

〈I, O,H, emit(h)〉 → 〈I, O,H, skip〉

E-IfValidTrue
h ∈ dom(H )

〈I, O,H, valid(h) c1 else c2〉 → 〈I, O,H, c1〉

E-IfValidFalse
h 6∈ dom(H )

〈I, O,H, valid(h) c1 else c2〉 → 〈I, O,H, c2〉

E-Mod
H(h) = r r′ = {r with f = v}

〈I, O,H, h.f = v〉 → 〈I, O,H[h 7→ r′], skip〉

E-Apply
CA(t,H) = (ai, v̄) A(ai) = λx̄.ci

〈I, O,H, t.apply()〉 → 〈I, O,H, ci[v̄/x̄]〉

E-Add
HT (h) = η initη = v

〈I, O,H, add(h)〉 → 〈I, O,H[h 7→ v], skip〉

E-AddValid
h ∈ dom(H )

〈I, O,H, add(h)〉 → 〈I, O,H, skip〉

E-Rem

〈I, O,H, remove(h)〉 → 〈I, O,H \ h, skip〉

Figure 3.6: Selected rules of the operational semantics of SafeP4; the elided rules
are standard.

header instance—i.e., a header instance which has not been added or extracted—

has no effect on the output bit stream (rule E-EmitInvalid). Notice also that

the header remains unchanged in H.

Sequential composition reduces left to right, i.e., the left command needs to
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E-Const
JkK(v1, ..., vn) = v

〈H, k(v1, ..., vn)〉 → v

E-Field
H(h) = {f1 : n1, ..., fk : nk}

〈H, h.fi〉 → ni

Figure 3.7: Selected rules of the operational semantics for expressions.

be reduced to skip before the right command can be reduced (rule E-Seq). The

evaluation of conditionals (rules E-If, E-IfTrue, E-IfFalse) is standard. The

rules E-Seq, E-If, E-IfTrue and E-IfFalse are relegated to the companion

technical report for brevity. The rules for validity checks (E-IfValidTrue, E-

IfValidFalse) step to the true branch if h ∈ dom(H) and to the false branch

otherwise.

Table application commands are evaluated according to rule E-Tapply. We

first invoke the control plane function CA(t,H) to determine an action ai and

action data v. Then we use A to lookup the definition of ai, yielding λx̄ : τ̄ . ci and

step to ci[v̄/x̄]. Note that for simplicity, we model the evaluation of expressions

read by the table using the control-plane function CA.

The rule E-Add evaluates addition commands add(h). Similar to header ex-

traction, the initη() function produces a header instance v of type η with all fields

set to a default value and extends the map H with h 7→ v. Note that according

to E-Add-Exist, if the header instance is already valid, add(h) does nothing. Fi-

nally, the rule E-Rem removes the header from the map H. Again, if a header h

is already invalid, removing it has no effect.

The semantics for expressions is defined in Figure 3.7, using tuples 〈H, e〉, where

H is the same map used in the semantics of commands and e is the expression to

evaluate. The rule E-Field reduces header field expressions to the value stored in
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Ent-Empty

· |= 1

Ent-Inst
dom(H) = {h}

H |= h

Ent-Seq

H1 |= Θ1

H2 |= Θ2

H1 ∪H2 |= Θ1 ·Θ2

Ent-ChoiceL
H |= Θ1

H |= Θ1 + Θ2

Ent-ChoiceR
H |= Θ2

H |= Θ1 + Θ2

Figure 3.8: The Entailment relation between header instances and header instance
types

the heap H for the respective field. To evaluate constants via the rule E-Const

(omitting the obvious congruence rule), we assume that there is an evaluation

function for constants JkK(v̄) = v that is well-behaved—i.e., if typeof(k) = τ̄ →

τ ′ and v : τ , then .; . ` JkK(v̄) : τ ′. We use these facts to prove progress and

preservation.

3.1.4 Safety of SafeP4

We prove safety in terms of progress and preservation. Both theorems make use

of the relation H |= Θ which intuitively holds if H is described by Θ. The formal

definition, as given in Figure 3.8, satisfies H |= Θ if and only if dom(H) ∈ JΘK.

We prove type safety via progress and preservation theorems. The respective

proofs are mostly straightforward for our system—we highlight only the unusual

and nontrivial cases below.

Theorem 3.1.1 (Progress). If · ` Θ : c Z⇒ Θ′ and H |= Θ, then either,

• c = skip, or
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• ∃〈I ′, O′, H ′, c′〉. 〈I, O,H, c〉 → 〈I ′, O′, H ′, c′〉.

Intuitively, progress says that a well-typed command is fully reduced or can

take a step.

Theorem 3.1.2 (Preservation). If Γ ` Θ1 : c Z⇒ Θ2 and 〈I, O,H, c〉 →

〈I ′, O′, H ′, c′〉, where H |= Θ1, then ∃Θ′1,Θ′2. Γ ` Θ′1 : c Z⇒ Θ′2 where H ′ |= Θ′1 and

Θ′2 < Θ2.

More interestingly, preservation says that if a command c is well-typed with

input type Θ1 and output type Θ2, and c evaluates to c′ in a single step, then there

exists an input type Θ′1 and an output type Θ′2 that make c′ well-typed. To make

the inductive proof go through, we also need to prove that Θ′1 describes the same

maps of header instance H as Θ1, and Θ′2 is semantically contained in Θ2. We

define syntactic containment to be Θ1 < Θ2 , JΘ1K ⊆ JΘ2K. (These conditions are

somewhat reminiscent of conditions found in languages with subtyping.)

Proof. By induction on a derivation of Γ ` Θ1 : c Z⇒ Θ2, with a case analysis on

the last rule used. We focus on two of the most interesting cases.

Case T-IfValid: c = valid(h) c1 else c2 and Γ ` Restrict Θ1 h : c1 Z⇒ Θ12 and

Γ ` NegRestrict Θ1 h : c2 Z⇒ Θ22 and Θ2 = Θ12 + Θ22.

There are two evaluation rules that apply to c, E-IfValidTrue and E-

IfValidFalse

Subcase E-IfValidTrue: c′ = c1 and h ∈ dom(H) and H ′ = H.

Let Θ′1 = Restrict Θ1 h and Θ′2 = Θ12. We have Γ ` Θ′1 : c′ Z⇒ Θ′2

by assumption, we have H |= Θ′1 by an elided lemma formalizing the
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relationship between Restrict and (|=), and we have Θ′2 < Θ2 by the

definition of < and the semantics of union.

Subcase E-IfValidFalse: c′ = c2 and h 6∈ dom(H) and H ′ = H.

Symmetric to the previous case.

Case T-Apply: c = t.apply() and CV(t) = (S̄, ē) and t.actions = ā and ·; Θ ` ej :

τj for ej ∈ ē and Restrict Θ1 Si ` ai : τ̄i → Θ′i for ai ∈ ā and Θ2 =
∑

(Θ′i)

Only one evaluation rule applies to c, E-Apply. It follows that CA(t,H) =

(ai, v̄), and c′ = ci[v̄/x̄] where A(ai) = λx̄. ci. By inverting T-Action, we

have Γ, x̄ : τ̄i; ` Restrict Θ Si : ci Z⇒ Θ′i. By control plane assumption (2),

we have ·; · ` v̄ : τ̄i. By the substitution lemma, we have Γ ` Restrict Θ Si :

ci[v̄/x̄] Z⇒ Θ′i. Let Θ′1 = Restrict Θ Si and Θ′2 = Θ′i. We have shown that

Γ ` Θ′1 : c′ Z⇒ Θ′2, we have that H ′ |= Θ′1 by control plane assumption (3),

and we have Θ′2 < Θ2 by the definition of < and the semantics of union

types.

3.2 Experience (Evaluation)

We implemented our type system in a tool called P4Check that automatically

checks P4 programs and reports violations of the type system presented in Fig-

ure 3.3. P4Check uses the front-end of p4v [72] and handles the full P414 language.1

Our key findings, which are reported in detail below, show (i) that our type sys-

tem finds bugs “in the wild” and (ii) that the programmer effort needed to repair

programs to pass our type checker is modest.

1We also have an open-source prototype implementation for P416 that handles the most
common features of P416 (https://github.com/cornell-netlab/p4check).
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3.2.1 Overview of Bugs in the Wild

We ran P4Check on 15 open source P414 programs2 of varying sizes and complexity,

ranging from 143 to 9060 lines of code. Our criteria for selecting programs was:

(1) each program had to be open source, (2) available on GitHub, and (3) compile

without errors, (4) and be written either by industrial teams developing production

code or by researchers implementing standard or novel network functionality in

P4—i.e., we excluded programs primarily used for teaching. Out of the 15 subject

2At the time this work was completed, there were significantly more P414 programs than P416
programs available on Github.
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programs only 4 passed our type checker, all of which were simple implementations

of routers or DDoS mitigation that accepted only a small number of packet types

and were relatively small (188–635 lines of code). For the remaining 11 programs

(industrial and research) our checker found 418 type checking violations overall.

Frequently, multiple violations produced by P4Check have the same root cause.

For example, if a single action rewrite ipv4 that rewrites fields srcAddr and

dstAddr for an ipv4 header is called in a context that cannot prove that ipv4 is

valid, then both references to ipv4.srcAddr and ipv4.dstAddr will be reported

as violations, even though they are due to the same control bug (Section 2.1.2)—

namely that rewrite ipv4 was not called in a context that could prove the validity

of ipv4. To address this issue, we applied another metric to quantify the number

of bugs (inspired by the method proposed by others [67]): we equate the number of

bugs in each program with the number of bug fixes required to make the program

in question pass our type checker. Using this metric, we counted 58 bugs.

We classified the bugs according to the classes described in Section 2.1. Fig-

ure 3.9 depicts the per-program breakdown of the frequency of each bug class, and

Figure 3.10 depicts the overall frequency of each bug. Notice that even though ta-

ble action bugs were the most frequent bug (with 22 occurrences), they were only

found in a single program (switch.p4). These bugs are especially prevalent in

this program because of its heavy reliance on correct control-plane configuration.

Conversely, there were 9 occurrences across 5 programs for both parser bugs and

table reads bugs.

Readers familiar with previous work on p4v [72], a recent P4 verification tool,

may notice that we detected no default action bugs for the switch.p4 program,

while p4v reported many! The reasons for this are two-fold. First, p4v allows
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programmers to verify complex properties, which means that it can express fine-

grained conditions on tables and relationships between them. In contrast, we make

heuristic assumptions about P4 programs that automatically eliminate many bugs,

including some default action bugs. Second, our repairs are often coarse-grained

and may enforce a stronger guarantee on the program than may be necessary;

using first-order logic annotations, p4v programmers manually specify the weakest

(and hence more complex) assumptions.

We make no claims about the completeness of our taxonomy. For example, we

found one instance, in the HappyFlowFriends program, where the programmer

had mistakenly instantiated metadata m as a header, and consequently did not

parse m (since metadata is always valid) causing m to (ironically) always be invalid.

3.2.2 P4Check in Action

We reprise the canonical examples of each class of bugs from Section 2.1, describing

how P4Check detects them and discussing ways to fix them.

Parser Bugfixes

Recall Figure 2.5, which exhibits the parser bug. The bug occurs because the

parser, which extracts IPv4-TCP packets, boots unexpected packets (such as IPv6

or UDP packets) directly to ingress, which then assumes that both the ipv4 and

tcp headers are valid, even though the parser does not guarantee this fact.

In terms of our type system, the parser produces packets of type ethernet ·

(1 + ipv4 · (1 + tcp)); however the control only handles packets of type ethernet ·
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./h.p4, line 350, cols 12-21: error tcp not guaranteed to be valid

./h.p4, line 118, cols 8-16: error ipv4 not guaranteed to be valid

./h.p4, line 101, cols 42-50: error ipv4 not guaranteed to be
valid

./h.p4, line 320, cols 8-15: error tcp not guaranteed to be valid

./h.p4, line 362, cols 12-19: error tcp not guaranteed to be valid

./h.p4, line 362, cols 29-36: error tcp not guaranteed to be valid

./h.p4, line 295, cols 60-69: error tcp not guaranteed to be valid

./h.p4, line 107, cols 8-16: error ipv4 not guaranteed to be valid

./h.p4, line 101, cols 42-50: error ipv4 not guaranteed to be
valid

./h.p4, line 163, cols 8-16: error ipv4 not guaranteed to be valid

./h.p4, line 101, cols 42-50: error ipv4 not guaranteed to be
valid

./h.p4, line 350, cols 12-21: error tcp not guaranteed to be valid

./h.p4, line 320, cols 8-15: error tcp not guaranteed to be valid

./h.p4, line 362, cols 12-19: error tcp not guaranteed to be valid

./h.p4, line 362, cols 29-36: error tcp not guaranteed to be valid

./h.p4, line 295, cols 60-69: error tcp not guaranteed to be valid

Figure 3.11: Curated output from P4Check for the parser bug in NetHCF before
(above) and after (below) modifying parse ethernet

ipv4 · tcp. Hence, when typecheck this example, P4Check reports every reference

to tcp and ipv4 in the whole program as a violation of the type system. As shown

in the top half of Figure 3.11, we get an error message at every reference to ipv4

or tcp. The ubiquity of the reports intimates a mismatch between the parsing and

the control types, which gives the programer a hint as how to fix the problem.

When we modify the default clause in parse ethernet, as in Figure 2.5, and

run our tool again, all of the ipv4 violations are removed from the output, as

shown in the bottom half of Figure 3.11. Then fixing the parse ipv4 parser, as in

Figure 2.5, causes our tool to output no violations. In particular, the type upon

entering the ingress control function is ethernet · ipv4 · tcp, so all subsequent

references to ipv4 and tcp are safe.
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port.p4 , line 248, cols 8-24: warning: assuming either vlan_tag_
[0] matched as valid or vlan_tag_ [0]. vid wildcarded

port.p4 , line 250, cols 8-24: warning: assuming either vlan_tag_
[1] matched as valid or vlan_tag_ [1]. vid wildcarded

fabric.p4 line 42, cols 41-67: warning: assuming fabric_header_cpu
matched as valid for rules with action terminate_cpu_packet

fabric.p4 , line 57, cols 17-54: warning: assuming
fabric_header_unicast matched as valid for rules with action
terminate_fabric_unicast_packet

fabric.p4 , line 81, cols 17-56: warning: assuming
fabric_header_multicast matched as valid for rules with action
terminate_fabric_multicast_packet

Figure 3.12: Warnings printed after fixing switch.p4’s reads bug (top), and its
actions bug (bottom)

Control Bugfixes

Recall that a control bug occurs when the incoming type presents a choice between

two instances that are not handled by subsequent code. The program shown in

Figure 2.6 uses a parser that produces the type Θ = ethernet · (1 + ipv4 · (1 +

udp · (1 + nc hdr · τ) + tcp)), where τ is a type for caching operations. Note that

Includes Θ nc hdr does not hold. However, process cache and process value

only type check in contexts where Includes Θ nc hdr is true. P4Check reports

type violations at every reference to nc hdr. Fixing this error is simply a mat-

ter of wrapping the process cache() call in a validity check as demonstrated in

Figure 2.6. As NetCache handles TCP and UDP packets as well as its special-

purpose packets, we simply apply the IPv4 routing table if the validity check for

nc hdr fails.3
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Table Reads Bugfixes

Table reads errors, as shown in Figure 2.7, occur when a header h is included in

the reads declaration of a table t with match kind k, and h is not guaranteed

to be valid at the call site of t, and if h 6∈ valid reads(t) or the match-kind of

k 6= ternary.

In the case of the port vlan mapping table in Figure 2.7, there is a valid bit

for both vlan tag [0] and vlan tag [1], both of which are followed by exact

matches. To solve this problem, we need to use the ternary match-kind instead,

which allows the use of wildcard matching. When a field is matched with a wild-

card, the table does not attempt to compute the value of the reads expression.

This fix assumes that the controller is well behaved and fills the

vlan tag [0].vid with a wildcard whenever vlan tag [0] is matched as invalid

(and similarly for vlan tag [1]). This also what the SafeP4 type system does,

with its maskable checks in the T-Apply rule P4Check prints warnings describing

these assumptions to the programmer (top of Figure 3.12), giving them properties

against which to check their control plane implementation.

Table Action Bugfixes

Table actions bugs occur when at least one action cannot be safely executed in

all scenarios. For example, the table fabric ingress dst lkp shown in Fig-

ure 2.8 has a table action bug, which can be fixed by modifying the table’s

reads declaration. Recall that the parser will parse exactly one of the headers

3Astute readers may detect a parser bug in this example. Hint, the ipv4 route table requires
Includes Θ ipv4 where Θ is type where it is applied.
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fabric hdr cpu, fabric hdr unicast and fabric hdr multicast, which means

that when the table is applied at type Θ, exactly one of Includes Θ fabric hdr i

for i ∈ {cpu, unicast, multicast} will hold. Now, the action term cpu packet

typechecks only with the (nonempty) type Restrict Θ fabric hdr cpu, and the

actions term fabric i packet only typecheck with the (nonempty) types

Restrict Θ term fabric i packet for i = unicast, multicast. P4Check sug-

gests that this is the cause of the bug since it reports type violations for all of the

references to these three headers in the control paths following from the application

of fabric ingress dst lkp.

The optimal4 fix here is to augment the reads declaration to include a validity

check for each contentious header. We then assume that the controller is well-

behaved enough to only call actions when their required headers are valid, allowing

us to typecheck each action in the appropriate type restriction. P4Check alerts

the programmer whenever it makes such an assumption. We show these warnings

for the fixed version of fabric ingress dst lkp below the line in Figure 3.12.

Default Action Bugfix

Default action bugs occur when a programmer creates a wrapper table for an action

that modifies the type, and forgets to force the table to call that action when the

packet misses. The add value header 1 table from Figure 2.9 wraps the action

add value header 1 act, which calls the single line add header(nc value 1).

The default action, when left unspecified, is nop, which means that if the

4Another fix would be to refactor the single into multiple tables, each guarded by a separate
validity check. However, combining this kind of logic in a single table helps conserve memory, so
in striving to change the behavior of the program as little as possible, we propose modifying the
table reads.
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pre-application type was Θ, then the post-application type is Θ + Θ · nc value 1,

which does not include nc value 1. Hence, P4Check reports every subsequent

reference (on this code path) to nc header 1 to be a type violation.

To fix this bug, we need to set the default action to add value 1—this makes

the post-application type Θ ·nc value 1+ Θ ·nc value 1 = Θ ·nc value 1, which

includes nc value 1, thus allowing the subsequent code to typecheck.

3.2.3 Overhead

It is important to evaluate two kinds of overhead when considering a static type

system: overhead on programmers and on the underlying implementation.

Typically, adding a static type system to a dynamic type system requires more

work for the programmer—the field of gradual typing is devoted breaking the

gargantuan task into smaller commit-sized chunks [24]. Surprisingly, in our expe-

rience, migrating real-world P4 code to pass the SafeP4 type system only required

modest programmer effort.

To qualitatively evaluate the effort required to change an unsafe program into

a safe one using our type system, we manually fixed all of the detected bugs. The

programs that had bugs required us to edit between 0.10% and 1.4% of the lines

of code. The one exception was PPPoE using P4, which was a 143 line program

that required 6 line-edits (4%), all of which were validity checks. Conversely,

switch.p4 required 34 line edits, the greatest observed number, but this only

accounted for 0.37% of the total lines of code in the program.

Each class of bugs has a simple one-to-two line fix, as described in Section 3.2.2:
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adding a validity check, adding a default action, or slightly modifying the parser.

Each of these changes was straightforward to identify and simple to make.

Another possible concern is that that extending tables with extra read expres-

sions, or adding run-time validity checks to controls, might impose a heavy cost on

implementations, especially on hardware. Although we have not yet performed an

extensive study of the impact on compiled code, based on the size and complexity

of the annotations we added, we believe the additional cost should be quite low.

We were able to compile our fixed version of the switch.p4 program to the Tofino

architecture [59] with only a modest increase in resource usage. Overall, given the

large number of potential bugs located by P4Check, we believe the assurance one

gains about safety properties by using a static type system makes the costs well

worth it.
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CHAPTER 4

DATA PLANE VERIFICATION AND THE CONTROL PLANE

INTERFACE

While lightweight, SafeP4’s static analysis approach described in Chapter 3 is

limited by its completeness and its expressiveness. Because header validity of-

ten depends on complicated bit-precise invariants about packet data, reasoning

precisely about which headers are valid requires dynamic runtime data.

For example, in standard parsers, the Ethernet header’s EtherType field de-

termines which Layer 2 header should be parsed next: if its 0x800, then the IPv4

header is parsed, if its 0x86DD then the IPv6 header is parsed,... etc. As a conse-

quence, programmers may rely on the value of EtherType to determine whether,

say, the IPv4 header is valid. For instance, consider the following code:

if (ethernet.etherType == 0x800){
if (ipv4.ttl > 0){

ipv4_route.apply ();
}

}

which checks whether the EtherType indicates that IPv4 should be valid before

running code that relies on the validity of the IPv4 header. Despite the fact that

this code is free of invalid header reads, SafeP4 will be unable to recognize this

fact.

To reason about these dynamic invariants, researchers have employed heavy-

weight verification. This also lets us naturally extend our concerns beyond the va-

lidity of headers.Because P4 is loop-free and finite state, we can employ automated

theorem provers to check whether programs satisfy correctness specifications. The

p4v and Vera papers were the first to show that this was pragmatic and efficient,

by compiling P4 programs to Dijkstra’s guarded command language (GCL), and
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c ∈ GCL
c ::= x := e Assignment
| astϕ Assertion
| asmϕ Assumption
| c; c Sequence
| c c Choice

x ∈ Var t ∈ Table

JcK : Packet→ P(Packet) ∪ {error}
Jx := eK pkt , {pkt [x 7→ e(pkt)]}
JasmϕK pkt , {pkt | ϕ(pkt) = true}

JastϕK pkt ,

{
{pkt}, if ϕ(pkt) = true

error, otherwise

Jc1; c2K pkt , (Jc2K} Jc1K) pkt

Jc1 c2K pkt ′ , Jc1K pkt ] Jc2K pkt

Figure 4.1: Syntax (left) and semantics (right) of the Guarded Command Language
GCL.

generating corresponding verification conditions. In the next section, we’ll outline

this approach to verification.

4.1 The Guarded Command Language

In the 70’s, Dijkstra invented a simple formalism for reasoning about imperative

programs. His guarded command language (GCL) had a core set of imperative

operators: assignment, assertions, and sequential composition, as well as two non-

deterministic control structures: the guarded command, and the do-loop. The

upshot of his constructions is that he was able to define predicate transformers

that defined the semantics of GCL programs in terms of transformations on logi-

cal formulae.

In this thesis, we will use a loop-free1 formulation of GCL (shown in Figure 4.1)

that uses a binary nondeterministic operator (c1 c2), combined with assert state-

ments (ast ϕ), and assumptions (asmϕ). This formalization allows the concisely

define a compact symbolic compilation function (due to Flanagan & Saxe [46]) that

generates logical expressions that precisely capture the semantics of the program.

1P4 programs are essentially loop-free
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Semantically, we’ll use GCL program to denote a nondeterministic function on

networking packets, with a possible error state error. What we call a packet pkt

is really just a variable valuation from a set of variables Var to set of bitvectors.

That is pkt ∈ Var → 2∗. We construct the set of all bitvectors 2∗, where 2 =

21 = {true, false} and 2n = 2 × 2n−1 for n > 1, and 2∗ =
⋃
i 2

i. To model the

nondeterminism, we use sets—that is, the denotation of c1 c2 is—loosely—the

union of the denotations of c1 and c2.

Formally, the denotation of c ∈ GCL, is a function JcK : Packet→ P(Packet)∪

{error}. The value of JcK pkt is either a an error state (see below), or a set

{pkt1, . . . , pktn} representing all of the possible nondeterministic outputs corre-

sponding to the input pkt . Let’s start with our primitives: assignment, assumption,

and assertion.

Assigments x := e denote a functional update to the input pkt . The language of

expressions e is simply the language of fixed with bitvector arithmetic (Figure 4.2).

Lower case variables x, y, z ⊆ Var range over first-order (bitvector) variables. In

the theory of fixed-width bitvectors, each variable is equipped with a bitwidth,

which we write [x]w, indicating that values of x must be drawn from 2w. The

expression language defined in the theory of bitvectors could feasibly be any finite

function on bitvectors, but typically we take a familiar set of core operations:

addition (+), subtraction (−), multiplication (∗), division (div), shifting (〈〈, 〉〉a,

〉〉l), concatenation (++), slicing (·[lo : hi ]), and bitwise operators (&, |, ⊕, . . . ).

We then write e(pkt) ∈ 2∗ to indicate the evaluation of the expression e on pkt .

It’s definition is standard, so we omit it. Then, fopr the denotation of x := e, we

can first evaluate e(pkt) = v ∈ 2∗ and then return the singleton set containing

only update(pkt , x, v), which is the packet that’s equivalent to pkt on all variables
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e ::= [v]w Literals
| [x]w Variables
| e� e Operations
| e[lo : hi ] Slicing
| !e Negation

� ∈ {+, ∗, 〈〈, 〉〉a, 〉〉l,++,&, |, . . .}

ϕ ::= false Absurd
| ¬ϕ Negation
| ϕ⇒ ϕ Implication
| ϕ ∧ ϕ Conjunction
| ϕ ∨ ϕ Disjunction
| e ∼ e BitVector Comparison

∼ ∈ {=, <s, <u,≤s,≤u, >s, >u,≥s,≥u, . . .}

Figure 4.2: Bitvector Arithmetic: expressions (left) and logical formulae (right)

except x, which is mapped to v.

Next, assumptions, written asmϕ, indicate the assumption that ϕ holds at

the current point in the program. Our formulae ϕ are derived from the theory

of bitvectors, that is the boolean logic defined over signed and unsigned binary

bitvector comparison operators (=, <s, <u, >u, >s, . . .) over our bitvector arith-

metic expressions. For now we’ll assume that ϕ is quantifier-free (this is called the

quantifier-free theory of bitvectors, i.e. QFBV). We write ϕ(pkt) ∈ {true, false}

to indicate evaluation function for formulae—we omit its definition since it is stan-

dard. Now, an assumption will check ϕ(pkt) for the input packet pkt . If it is true,

the denotation is simply {pkt}, otherwise, it’s the emptyset ∅.

Conversely, assertions can cause the program to crash. For an assertion astϕ,

if ϕ(pkt) = false, then the denotation is error. Otherwise, the singleton set {pkt}

is returned. The error state error is different than returning ∅ because of how it

interacts with nondeterministic choice and sequential composition.

Nondeterministic choice, written c1 c2, loosely denotes the union of the deno-

tation of both c1 and c2. However, if if either c1 or c2 denotes an error state error,

then c1 c2 should also denote error. To capture this, we define a “strict” union,
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written P1 ] P2 where P1, P2 ∪ P(Packet) ∪ {error}. It is defined as follows:

P1 ] P2 ,


error P1 = error or P2 = error

P1 ∪ P2 otherwise

Now, the denotation of c1 c2 for a packet pkt is Jc1K pkt ] Jc2K pkt .

Finally, sequential composition, written c1; c2 does a similar kind of exception

handling. As before, if c1 or c2 produces an error, then the whole program is con-

sidered to have produced an error. We define the following composition operation:

(f1 } f2) pkt ,


error if f1(pkt) = error⊎
pkt ′∈f1(pkt)

f2(pkt ′) otherwise

Now the denotation of c1; c2 is simply Jc2K} Jc2K.

4.2 Symbolic Compilation

GCL’s simplicity pays dividends in the facility with which it can be symbolically

compiled. Dijkstra’s weakest precondition function wp(c, ϕ) gives the foundational

algorithm for computing the weakest assumption ψ on the inputs to c that ensures

that running c satisfies φ. The formula ψ is called the “weakest precondition”.

The function is defined below:

wp(x := e, ϕ) , ϕ[x/e]

wp(asmψ, ϕ) , ψ ⇒ ϕ

wp(astψ, ϕ) , ψ ∧ ϕ

wp(c1; c2, ϕ) , wp(c2,wp(c1, ϕ))

wp(c1 c2, ϕ) , wp(c1, ϕ) ∧ wp(c2, ϕ)
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These predicate transformer semantics can be related directly to our denotational

semantics via the following theorem originally due to Dijkstra [32]

Theorem 4.2.1 (Weakest Precondition [32]). For a program c and a formula ϕ,

with ψ = wp(c, ϕ)

1. For pkt , pkt ∈ Packet s.t. ψ(pkt) = true and pkt ′ ∈ JcK pkt, then ϕ(pkt ′), and

2. For all other ψ′ satisfying (1), ψ′ ⇒ ψ.

With this machinery in hand, we can check that a data plane program satisfies

a property so long as we can produce both a GCL program c that models that

data plane program, and a corresponding ϕ that encodes the property we want.

We can use high powered solvers to verify the validity of wp(c, ϕ).

4.3 Modeling P4 in GCL

We have all the ingredients for sound model of P4 programs. Most of the

operations, assignment, conditionals, parsing, can be modelled either have di-

rect counterparts, or simple encodings into GCL. For instance, we will define

if(ϕ){ct}{cf} = (asmϕ; ct) (asm¬ϕ; cf ). First we’ll enumerate a few of the simpler

features, and then address the core question: match-action tables.

4.3.1 Headers

Headers are similar to structs in the C language, with typed fields f1, . . . , fn,

which can be accessed using standard dot notation, e.g. h.fi. Headers are also

60



equipped with a validity bit h.isValid() that can be manually manipulated using

the setValid() and setInvalid() methods. We explode headers a list of variables

h f1, . . . , h fn, one for each field. We also add an explicit validity bit to each

header, e.g. h isValid. Then h.setValid() and h.setInvalid() can be modeled as

assignment of 0 or 1 to h isValid. The validity bit for all headers is initialized to 0.

Metadata is another struct-like data representation. They differ from headers

only in that they have no validity bit.

4.3.2 Parsing

Parsers are often expressed using a finite state machine abstraction [20], however,

because of limitations in programmable data plane hardware [21], these finite state

machines are required to terminate within a given bound [29]. In practice, it is

straightforward to unroll parser loops.

The extract primitive that we focused on in Chapter 3 can be modelled using

to the validity bit, and a kind of “havoc” assignment to the extracted fields. For

instance, pkt.extract(h) where h has a single 8-bit field f can be modeled using

the GCL program h isValid := 1; h f := ?a where ?a is a fresh variable. Then,

any relationships between parser data created by, for instance, parser lookahead,

can be expressed in terms of these havoc-variables. In the common case, however,

these havoc variables can be eliminated by standard compiler optimizations.
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4.3.3 Hash Functions

Hash functions are often used for network functions like heavy-hitter detec-

tion [100], or load balancing via equal-cost multipath routing (ECMP). We could

model hash functions using uninterpreted functions and concolic execution [97].

However, because they typically occur only once in a pipeline, we can usually get

away with modeling them using nondeterminism.

4.3.4 Stateful Operations

Stateful operations are also used to support a variety of applications including in-

network telemetry [100], and in-network caching [63], among others. The challenge

in programming with state is that stateful externs in P4 programs are subject to

data races,2 except when surrounded by the @atomic annotation. For simplicity,

we treat non-atomic register reads as producing nondeterministic values, while

treating registers in @atomic blocks like fields in headers.

4.3.5 Match-Action Tables

The key features are the match-action tables. The standard approach [72, 112] is

to model tables as a nondeterministic choice between their actions. For instance,

the fabric ingress dst lkp table from switch.p4 Figure 2.7 can be modeled as

the following GCL program :

a0 a1 a2

2Section 18.4.1 of the P4 language specification[29]
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where a0 is the GCL encoding of term cpu packet, a1 of term fabric unicast packet,

and a2 of term fabric unicast packet.

This model is certainly sound—if we prove that a property ϕ holds no matter

what combination of actions are executed, then certainly, for any specific configu-

ration of the tables, the data plane program satisfies ϕ.

However, this approach does yield false alarms. As first noted by the authors

of p4v, data plane programmers make assumptions about how the control plane

will configure tables. In Chapter 5 we’ll see that over 50% of a dataset of real

programs make nontrivial assumptions about how the tables are programmed,

which aligns with previous surveys of p4 programs: p4v notes that 9 of its 11

analyzed programs require control plane interfaces, and an analysis of bf4’s data

suggests that somewhere between 40% and 100% of the programs in its benchmark

suite make assumptions about how the control plane programs tables.

We’ll address our solution to this problem in Chapter 5, but first, lets look at

some prior work

4.4 A First Attempt: Manual Control Interface Specs

The solution that p4v offers is manual specification. p4v provides programmers

with a specification language for specifying the interface to the control plane. This

is a good approach to the problem, and has inspired both compositional reasoning

(in Π4), and industrial grade verification systems (in Acquila).

In addition to the standard GCL, p4v provides users with a simple language

of control plane interface specifications. Concretely, the language of expressions is
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extended with the following atomic predicates, where t ranges over table names, k

over table keys, and a over table actions:

reach(t) reads(t, k) hit(t) miss(t) action(t) action data(t, a, x)

These predicates are relatively self-explanatory, for instance reach(t) is 1 if program

execution is guaranteed to reach table t. Similarly, action(t) returns an identifier

indicating the action that table t selects.

The authors suggest making a program-initial assumption that captures the

required invariants on the table contents. For instance, one might assume that

whenever execution t1 runs action a, then t2 must run action b. This assumption

can be written as follows:

asm(a = action(t1)⇒ b = action(t2))

which is equivalent to action(t1) ⇒ reach(t2). This interface is straightforward

and expressive. Indeed, the authors claim that expert users can write annotations

for industrial-grade programs. They do so in their evaluation, and show that, with

specifications, they can verify that a suite of industrial grade programs satisfy

the header validity property.Unfortunately, this specification language does not

provide specifications purely on the table state. For instance, the truth of reach(t)

can only be evaluated on the data plane state.

As an improvement upon this, software defined networking engineers at Google

have developed a simple annotation language, called p4-constraints [107] that

they use to eliminate false positives [2]. Their constriants provide a flexible and

general framework for expressing custom assumptions about the control plane’s

configurations. We will call these specifications control interface specifications

(ci-specs).
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In the next chapter, we study how to compute ci-specs. These specifications

not only allow verification engineers to build verifiers and fuzzers that rule out

false alarms, they also close the loop on a having a precise specification of switch

behavior: from just a program denoting an interface and its semantics, to that

program, plus an incorporated ci-spec describing the safe use of that interface.
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Part II

Control Interface Specifications
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CHAPTER 5

COMPUTING PRECISE CONTROL INTERFACE

SPECIFICATIONS

Modern networks are increasingly programmable [76, 52, 20, 45]. Abstractly,

network architectures can be modeled in terms of two cooperating programs: the

data plane and the control plane. The control plane is a general-purpose program

that computes forwarding paths through the network topology and generates con-

figurations (configs) for data plane devices such as routers, switches, firewalls, etc.

The data plane is a collection of restricted (e.g., loop-free and finite-state) pro-

grams that process packets efficiently, typically using a pipeline of configurable

forwarding tables. This relationship is characterized in the schematic below:

Control Plane
General-purpose program that computes network-wide

paths encoded as per-device configsygenerates

Config
Describes (parts of) processing done by individual

devices; may or may not introduce bugsyinstall

Data Plane
Specialized hardware/software pipelines that
use configs to forward and transform packets

Figure 5.1: The control plane generates configs that define data plane behavior.
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In an ideal world, data plane programs would be written to exhibit correct

behavior under any possible config that might be generated by the control plane.

However, due to pragmatic hardware-level concerns, programmers make simplify-

ing assumptions about which configs its controller will generate. Unfortunately,

existing data plane verification tools take an adversarial perspective, assuming

that anything the control plane can do it will do. Consequently, these tools are

subject to false alarms—i.e., configs that violate a given property but will never

be generated [72, 2].

To address this problem, the research community has proposed several solu-

tions. Vera uses a runtime monitor that inlines the config and re-verifies the

configured data plane program every time the control plane generates a new con-

fig [108]. Intel’s p4v tool and Google’s p4-constraints library use first-order

formulae to specify assumptions about the control plane-generated configs. These

constraints are then used to rule out false alarms during verification [72, 2, 97], and

to monitor the configs generated by the control plane [107]. However, re-verifying

the data plane every time the config changes is expensive, and writing assump-

tions by hand is complicated and error-prone. How can programmers be certain

the control plane will satisfy complex requirements on configs?

Computing Interface Specifications A different approach is to compute a

precise specification for the interface between the control plane and data plane.

We call these descriptions control interface specifications (ci-specs). Rather than

declaring that a data plane program is “verified” or “unverified”, a ci-spec char-

acterizes the conditions that configs must satisfy for the data plane program to

satisfy its correctness properties. Hence, it shifts the onus for establishing correct-

ness to the control plane—provided its configs satisfy the ci-spec, the data plane
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will behave as expected; conversely, if its configs violate the ci-spec, the data plane

will be buggy. The ci-specs can be used to monitor the control plane—configs that

violate the ci-spec can be logged for offline analysis or rejected outright.

Precise and Efficient Control Interface Specifications In this chapter, we

propose Capisce, the first inference engine capable of computing precise and ef-

ficiently control-monitorable ci-specs. Informally, a precise ci-spec is both safe,

meaning that satisfying configs trigger no bugs, and tight, meaning that violating

configs have at least one packet that triggers a bug. Note that computing a precise

ci-spec has a well-studied solution—we can compute the weakest precondition for

the data plane and universally quantify over the variables that describe the packet

state (Section 5.2, also vera [108], p4v [72]). However, checking that a config sat-

isfies an arbitrary universally-quantified formula is expensive [70]. Instead, Capisce

produces ci-specs that the control plane can monitor efficiently. We define a class

of efficiently control-monitorable sentences (ECMS) and show that every ECMS

has polynomial complexity. Importantly, Capisce infers precise ci-specs in ECMS.

To characterize the complexity of ci-spec inference, we show that it is equivalent

to quantifier elimination (Qe) in the quantified theory of bitvectors (QBV). In

one direction, we describe a compiler pipeline from a high-level model of pipeline

programs called the guarded pipeline language (GPL) to the theory of bitvectors

with uninterpreted functions (UFBV), and we show how to use Qe on specific

variables to produce a precise ci-spec in ECMS. In the other direction, we show

how to reduce Qe to the problem of computing ci-specs—i.e., we produce a simple

GPL program whose ci-spec requires eliminating a universal quantifier.
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A Practical Implementation Based on Path-Based Heuristics The cor-

respondence between ci-spec inference and Qe provides a daunting complexity

challenge for the practical tractability of ci-spec inference. In particular, while Qe

can be solved in a finite domain by enumerating the possible instantiations for the

quantified variable, a strategy affectionately known as bit-blasting, this strategy

isn’t tractable for real-world data plane programs that manipulate thousands of

bits.

For practical programs, however, it is often possible to side-step the worst-case

complexity. We draw inspiration from two software engineering folk theorems: (1)

“programs are usually correct” and (2) “bugs have simple causes.” We interpret

(1) to mean that most program paths are correct, and the remaining paths are

“buggy.” Similarly, we interpret (2) to mean that among those relatively few

buggy paths, it suffices to compute ci-specs for only a few of those.

Capisce leverages these path-based insights in its core algorithm CegQe: a

counterexample-guided inductive inference (CeGIS) loop that uses counterexam-

ple paths to iteratively strengthen a candidate ci-spec until it is strong enough to

prove the data plane program correct. The precision comes from ensuring that the

strengthening step never “overshoots”—i.e., the candidate ci-spec ψ never becomes

strictly stronger than the weakest ci-spec.

We have implemented our approach in a tool called Capisce (Section 5.7), and

used it to check a standard safety property on a collection of practical programs.

Our experiments show that Capisce is able to handle real-world programs, and

effectively finds bugs, while only exploring a tiny fraction of these programs’ paths

(e.g., for our repaired version of fabric.p4, only .00000000049%).
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Contributions Overall, this paper makes the following contributions:

• a formal model of data plane pipelines in our new language GPL, and a com-

piler from GPL to the quantifier-free theory of bitvectors and uninterpreted

functions (QFUFBV);

• the class of efficiently control-monitorable sentences (ECMS) and a proof that

inferring precise ci-specs in this class is equivalent to quantifier elimination

(Qe) in the theory of bitvectors;

• an iterative-strengthening algorithm (CegQe) for computing precise ci-specs

in ECMS that exploits software engineering insights;

• an implementation of Capisce in OCaml, leveraging Princess and Z3 as black-

box Qe engines;

• an evaluation of Capisce on a benchmark suite of real-world data plane pro-

grams, which shows that Capisce can compute precise ci-specs for real-world

P4 programs.

5.1 Background and Motivation

In a data plane program, the programmer declares a set of match-action tables,

and then specifies a conditional pipeline that determines the order in which the

tables are executed, or applied.

A table declaration comprises two components: a key and a set of actions. The

key is a list of expressions e1, . . . , en whose runtime values are used to determine

which action is executed. An action is simply a function whose arguments are
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action nop() {} 

action set_grp(g) { grp := g }

action set_port(p) { port := p }

table group {

  key = { ipv4.dst } 

  action = { set_grp }

}

table agg {

  key = { grp } 

  action = { set_port; nop }

}

apply { 

  group.apply(); 

  agg.apply();

  assert (port != NONE);

} 

Pipeline

Table Declarations

Action Definitions

Buggy Configuration

ipv4.dst Action

192.0.2.47 set_grp(1)

192.0.2.42 set_grp(42)

otherwise set_grp(0)

grp Action

1 set_port(47)

0 set_port(DROP)

otherwise nop()

Safe Configuration

ipv4.dst Action

192.0.2.47 set_grp(1)

otherwise set_grp(0)

grp Action

1 set_port(47)

0 set_port(DROP)

otherwise nop()

Precise 

Control Interface 

Specification

𝐺𝑟𝑜𝑢𝑝 𝐴𝑔𝑔

𝐺𝑟𝑜𝑢𝑝 𝐴𝑔𝑔

Data Plane 
Switch Program

Figure 5.2: An example data plane pipeline program (right) and with an asserted
ci-spec (bottom right). Capisce computes a precise ci-spec (center), which ensures
that the pipeline satisfies the spec. If the control plane (left) installs a bad config
(top), it is rejected. Safe configs, like the one shown on the bottom, are accepted
and can be safely installed into the pipeline program.

determined by the table itself—these arguments are called action data. As an

example, consider the table below:

action nop () {}
action set_port (p) { port = p

}
table fwd {

key = { ipv4.dst }
actions = { set_port; nop }

}

ipv4.dst Action

192.0.2.47 set port(47)

192.0.2.42 set port(42)

otherwise set port(DROP)

The table fwd, defined in the pseudocode on the left, has a single expression as

its key: the variable ipv4.dst that holds the IPv4 destination address. It also

has two possible actions: nop and set port. At runtime, the table’s configuration

(shown on the right above) will read the value of ipv4.dst and run either the

set port action, or nop.

As defined above, the nop action has no action data parameters and executes
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no operations, while the set port action assigns its single action data parameter p

to the port variable. Whenever a config indicates that the set port action should

be run, it must provide an argument, called action data, to the set port function.

At runtime, a match action table is a kind of lookup table whose entries are

configured by the control plane. To apply or run a table means evaluating its

key expressions, finding the matching table entry, and executing the indicated

action with the indicated action data. For example, the table below is to the

control plane’s config. This table has three entries, or rows. The first two execute

the set port action with action data n whenever the IPv4 destination address is

192.0.2.n for n ∈ {42, 47}. The final row executes set port with action data

DROP for every other packet.

These table configs are fundamental to determining the functionality of the

switch. To see this, let’s look at another example, shown in Figure 5.2. This

pipeline exhibits a common pattern known as link aggregation [111, 41]. In this

program, packet forwarding is divided into two tables: group, which computes

a forwarding group ID for each packet; and agg, which maps each group ID to

its forwarding port. In more detail, group looks up the IPv4 destination address

(ipv4.dst) in the controller-provided config, which determines the action to be

run. The group table only has a single allowed action, set group, which assigns

its action data to the grp field. For example, first row of the example config

shown in Figure 5.2 for group assigns the grp field to 1 whenever ipv4.dst is

192.0.2.47. Then, agg looks up the new grp in its config and either runs nop,

which does nothing, or set port, which assigns its action data p to the port field.

Continuing the example, the first row of the config for group sets the port to

47 when grp is 1. Running these configured tables in sequence has the effect of
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forwarding packets with ipv4.dst equal to 192.0.2.47 on port 47.

The layer of indirection provided by group and agg is extremely valuable to

network operators. Networks must react rapidly to hardware failures or changing

service demands by forwarding packets on new routes. Unfortunately, modify-

ing the contents of tables can incur high costs in hardware: due to the way that

ternary content addressable memories (TCAMs) work, it can take minutes to pro-

cess modifications that update thousands of entries [114]. The link-aggregation

pattern avoids having to routinely execute minutes-long transactions by rerouting

link aggregation groups. If many IP addresses map to the same link aggregation

group and the adjacent link goes down, the control plane can reroute traffic for all

of those IP addresses by updating a single rule.

The price for efficient reconfigurability is correctness—it is possible for the

controller to introduce bugs in this program. Concretely, it can violate the so-

called determined forwarding safety property, which asserts that every packet has

a defined port value at the end of the pipeline. This is required because on certain

hardware devices [116, 54], failing to assign a port value causes the packet to be

forwarded on an undefined port. In building large systems of critical infrastructure

(like networks), we want to avoid undefined behavior, so we classify such behavior

“buggy.” One config that produces undefined behavior is shown at the top of

Figure 5.2. The group table maps address 192.0.2.42 to group 42, which triggers

the catch-all rule in agg and executes nop. Hence, in this config, the forwarding

behavior for packets with destination 192.0.2.42 is undefined.
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5.1.1 Inference of Control Interface Specifications

Rather than rejecting programs for which the control configs may introduce buggy

behavior, such as the one in Figure 5.2, we propose computing an interface spec-

ification ψ that describes the set of configs that ensure the data plane program p

satisfies a given specification ϕ.

For instance, for the example in Figure 5.2, we want all configs for which the

group table sets the group field to a value for which agg runs set port. We call

these restrictions control interface specifications (ci-specs). Mathematically, we

can specify these specifications using first-order logic.

We can represent each table using a function symbol, Group for group and

Agg for agg. Each function symbol has an argument for each key, and returns

both an identifier that indicates which action will run, and the action’s data. For

notational elegance, when writing ci-specs, we notate these functions as relations,

with the implicit understanding that they also adhere to the requisite functional

dependencies and totality constraints. For instance, if we write Agg(g, a, p), the

variable d corresponds to an input IPv4 address, then a is the output action iden-

tifier (either nop or set port), and p is the output port value. Formally, a ci-spec

for a pipeline program p is a first-order logic formula over the functions induced

by their tables.

Our goal is to compute precise ci-specs. A ci-spec ψ is safe for a program p

and spec ϕ, if p is guaranteed to satisfy ϕ for all configs that satisfy ψ. Dually,

a ci-spec ψ is tight for p and ϕ, if it is satisfied by every config for which p

satisfies ϕ. To define these notions formally, we stipulate some semantics function

JpK : Config→ Packet→ Packet (see Section 5.2) that takes in a config σ ∈ Config
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and produces a function on packets (pkt ∈ Packet).

Definition 5.1.1 (Safe ci-spec). Given a pipeline p and specification ϕ, a ci-spec

ψ is safe if for every config σ, we have: σ |= ψ ⇒ ∀pkt . JpKσ pkt |= ϕ

Definition 5.1.2 (Tight ci-spec). Given a pipeline p and specification ϕ, a ci-spec

ψ is tight if for every config σ, we have: (∀pkt . JpKσ pkt |= ϕ)⇒ σ |= ψ

Finally, we say that a ci-spec is precise if it is both safe and tight. For example,

the ci-spec shown in the center of Figure 5.2 is precise. Note that a precise ci-spec

has the property that for each config that does not satisfy it, there is at least

one input that causes the data plane program to violate its spec. Hence, precise

ci-specs can also be seen as the weakest—i.e., the most-permissive ci-spec.

The overall goal of this paper is to solve the following problem:

Definition 5.1.3 (Problem Statement). For a program p and a spec ϕ, compute

a precise ci-spec ψ.

In what follows, we will show how to produce precise ci-specs; but first, we

describe previous work in this area, and elucidate why it doesn’t suffice in our

domain.

5.1.2 Previous Work

The general problem of synthesizing ci-specs has been studied both in and out of

the networking community. The bf4 tool uses program synthesis to infer single-

table necessary ci-specs [30, 36], which prohibit no good runs. Formally, a ci-spec

ψ is necessary for a program p and spec ϕ, if for every config σ s.t. σ 6|= ϕ, every
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input packet causes p to violate ϕ, that is JpKσ pkt 6|= ϕ. If bf4 cannot infer a

necessary constraint that is also sufficient, it reports the program as having true

bugs. In Section 5.7.6, we compare our approach against bf4 and find that we infer

many more safe ci-specs. As an example, when provided with the example from

Figure 5.2, bf4 computes no ci-spec, because there is no necessary single-table

ci-spec.

The problem of inferring interface specs (i-specs) has also been studied for

general-purpose programs. The MaxSafeSpec algorithm synthesizes the weak-

est i-spec that is a conjunction of formulae over single function symbols [3]. In

our context, this syntactic constraint is analogous to bf4’s single-table constraint.

The difference here is that MaxSafeSpec computes sufficient (or safe) i-specs.

However, the single-function restriction leads to false alarms when used with

data plane programs. Returning to the example, MaxSafeSpec would com-

pute Agg(grp, a, port) ⇒ a = set port, which would reject the sound config at

the bottom of Figure 5.2.

So, using current approaches, a data plane engineer seeking to compute ci-specs

would need to decide between a potentially-unsafe under-approximation, and an

over-approximation, which can lead to false alarms. Capisce threads the needle

by computing efficient and precise ci-specs, to provide a safety guarantee while

minimizing false alarms.

5.2 Modeling

The remainder of this paper describes Capisce, which computes precise and effi-

cient ci-specs. The first step is to obtain a symbolic model of the data plane. To do
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ϕ ::= false Absurd
| ∀[x]w. ϕ Quantify
| ϕ⇒ ϕ Implication
| e ∼ e Compare

x ∈ Var, w, ` ∈ N, F ∈ Func
∼ ∈ {=, <s, <u,≤s,≤u, . . .}

e ::= [v]w Literals
| [x]w Variables
| e� e Binary Ops
| e[lo : hi ] Slicing
| !e Negation
| Fw,`(e) Function

� ∈ {+, ∗, 〈〈, 〉〉l,++,&, |, . . .}

Figure 5.3: Bitvector Theories. The syntax of UFBV formulae (left) and expres-
sions (middle). The classification of bitvector theories (above right), depending
on whether they allow quantifiers (∀) and/or uninterpreted functions (F ). The
semantics of bitvector expressions are standard.

this, we describe a symbolic compilation pipeline from an abstract model of data

planes (Section 5.2.2) to the theory of bitvectors and uninterpreted functions (Sec-

tion 5.2.1). Our abstract pipeline language (Section 5.2.2) is called the guarded

pipeline language (GPL), which lets us reason about branching pipelines of ta-

bles. We show we can model pipelines as programs in the assume-variant [46] of

Dijkstra’s guarded command language [32] by leveraging uninterpreted functions

(Section 5.2.2). This modeling lets us employ fairly standard symbolic compila-

tion techniques (Section 5.2.4) to develop a symbolic model. We use this symbolic

model to compute precise and efficiently monitorable ci-specs.

5.2.1 Theories of Fixed-width Bitvectors

The core theory of bitvectors remains as defined in Section 4.1. However, we extend

the logic with function symbols and quantifiers. Our function symbols also have

types 2w → 2` for w, ` ∈ N, in the grammar, we write this as Fw,`, but in practice,

as with bitwidths elsewhere, we omit these annotations. Lower case greek symbols

ϕ, ψ, χ range over bitvector formulae in UFBV.
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The semantics is largely standard, except for its use of configs σ ∈ Config. The

set of configs (Config) is the set of functions with type Func → 2∗ → 2∗. For

convenience, we restrict (wlog1) the co-domain of σ to be functions from 2∗ to 2∗.

However, because each Fw,` has type 2w → 2`, it must be that σ(F ) : 2w → 2`.

Intuitively, for a function symbol F ∈ Func, we have that σ(F ) is a function

definition for F . In this sense, configs σ can be viewed as finite sets modeling

first-order logic formulae. In addition to configs, we need to define the runtime

packet pkt ∈ Packet. A packet is a valuation function pkt : Var→ 2∗ on variables.

We stipulate a standard evaluation function for expressions E JeKσ pkt = v and a

satisfaction relation for formulae σ |=pkt ϕ.

Notice that our theories differs along two dimensions, the language of formulae

(ϕ), and the language of expressions (e). To indicate that a formula ϕ is syntacti-

cally valid in theory T , we write ϕ ∈ FormT . We also write e ∈ Expr(T ), when e

is in T ’s language of expressions. This is summarized in the following table:

ϕ w/ ∀ w/o ∀

w/ F UFBV QBV

w/o F QFUFBV QFBV

5.2.2 Syntax and Semantics of the Guarded Pipeline Lan-

guage (GPL)

This section presents our modeling language for tables, GPL(T ). The language

is parametric over the bitvector theory used in expressions and assumptions. By

default, we will assume T is QFBV (i.e., no quantifiers or uninterpreted functions),

1F (x, y) = 〈[p]m, [q]n〉 can be seen as syntactic sugar for F (x ++y)[0 : m] = [p]m ∧ F (x +
+y)[m+ 1 : m+ n+ 1] = [q]w
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p ∈ GPL(T )
p ::= x := e Assignment
| asmϕ Assumption
| t(e) Table
| p; p Sequence
| p p Choice

x ∈ Var t ∈ Table
e ∈ Expr(T ) ϕ ∈ FormT

JpKσ : Packet→ P(Packet)

Jx := eKσ pkt , {pkt [x 7→ E JeKσ pkt ]}
JasmϕKσ pkt , {pkt | σ |=pkt ϕ}

Jt(e)Kσ pkt , Jai(d)Kσ pkt
where t : 2n → {a1, . . . , ai, . . . , an}

and 〈i, d〉 = σ(t)(E JeKσ pkt)

Jp1; p2K
σ pkt ,

⋃
pkt ′∈Jp1Kσpkt Jp2K

σpkt

Jp1 p2K
σ pkt , Jp1K

σ pkt ∪ Jp2K
σ pkt

Figure 5.4: Syntax (left) and semantics (right) of Guarded Pipeline Language
GPL(T ) over a bitvector theory T . Highlighted variants only occur in GPL(T );
the other variants are Guarded Command Language GCL(T ).

and will write GPL to denote GPL(QFBV).

The syntax and semantics of GPL(T ) are presented in Figure 5.4. A GPL(T )

program is mostly standard comprising: assignment [x]w := e which assigns e ∈

Expr(T ) to the w-bit variable x; assumption (asmϕ) which assumes the truth of

ϕ ∈ FormT ; sequential composition (c; c); and finally nondeterministic choice (c c).

The main non-standard constructs found in GPL(T ) are table declarations and

table applications. A table declaration T = 〈t, n, a〉 is a tuple comprising a table

name variable t ∈ Table ⊆ Func, a natural bitwidth indicating the size of its key

domain, n ∈ N, and a set of possible actions a ⊆ Action. An action a = λd : w. p

is a function parameterized on a variable d of bitwidth w and runs a straight-line

program p that may read d (a straight-line program never uses nondeterministic

choice). For an argument [v]w, we write a(v) to mean the substitution p[d 7→ v].

When w = 0 we use the syntactic sugar λ(). p. We use 2n to refer to the set of

bitvectors of width n. To evoke tables’ functionality, we stylize their declarations

as follows: t : 2n → a.

For instance, below we declare the Agg and Group tables from Figure 5.2, first
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defining the actions, and then declaring the tables. The key width for the Group

table is 32 as it reads the IPv4 destination address, a 32-bit field. The Agg table

reads the grp field, which is also 32 bits.

set group g , grp := g set port p , port := p nop() , asm true

Group : 232 → {set group} Agg : 232 → {set port, nop}

A table application is written t(e) for some declared table t : 2n → a and

expression e ∈ QFUFBV of width n. This variant is highlighted in Figure 5.4.

To indicate that a program p may reference a set of declarations T, we write the

stylized pair p[T]. With the above definitions, the link aggregation example from

Figure 5.2 is written as follows:

Group(ipv4.dst); Agg(grp)

Semantically, a GPL(T ) program p takes in a config σ ∈ Config and returns

a function from packets (Packet) to sets of packets (P(Packet)). Formally, we

have a function JpKσ : Packet → P(Packet), whose semantics are provided in

Figure 5.4. Assignment x := e uses the pkt and σ to evaluate e to a bitvector v,

returning a singleton set containing the packet pkt [x 7→ v]. The notation pkt [x 7→

v] indicates the packet that is identical to pkt except on variable x, which is

mapped to v. Next, assumptions (asmϕ) evaluate whether pkt satisfies ϕ in σ:

if so, it returns the singleton packet set {pkt}, otherwise it returns the empty

set ∅. Sequential composition (p1; p2) is the composition of the denotation of c1

composed with the denotation of p2 lifted to sets in the natural way. Similarly,

the semantics of nondeterministic choice (p1 p2) is the union of the denotations

of the disjuncts. Again, GPL(T )’s most novel construct is table application, t(x),

which, semantically, looks up t in the config σ. Then, σ(t) returns a pair 〈i, d〉 of
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an action identifier i and action data d. The semantics then select the ith action

ai, and run it with its argument.

From this model, we can also define syntactic sugar for trivial and conditional

statements. The trivial statement skip does nothing. Conditionals are encoded in

the standard way using a combination of assumes and nondeterministic choice:

skip , asm true if(b){ct}{cf} , asm b; ct asm¬b; cf

For a formula ϕ ∈ FormT , construing JpKσ to be a relation lets us write JpKσ |= ϕ

to indicate that p satisfies ϕ under config σ. We find it more evocative to write

this as p[σ] |= ϕ. We also define p |= ϕ to be ∀σ. p[σ] |= ϕ.

An aside on types. GPL requires a type system to keep track of bitwidths

and ensure they are used consistently throughout a program. However, we will

elide this detail as it is standard and unsurprising. We will also omit bitwidths in

examples when they are obvious or irrelevant.

5.2.3 Modeling Tables as Uninterpreted Functions

In this section, we show how we can model GPL(T )’s tables using uninterpreted

functions. We do so by defining a restriction of GPL(T ) that corresponds to

Dijkstra’s guarded command language (GCL(T )), and then defining a mapping

from GPL(T ) to GCL(T ), and proving equivalence.

Formally, GCL(T ) is the subset of GPL(T ) that excludes table application.

Just as we’ve been letting p range over GPL(T ) programs, let c range over
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GCL(T ) programs. For GCL(T ), the default theory is QFUFBV, so we take

the convention that GCL indicates GCL(QFUFBV).

We can define model : GPL → GCL for an application of table t : 2w → a.

Intuitively, model(t(x)) treats t as an uninterpreted function, and applies it to

the key x to produce an action and argument and then runs that action with its

argument.

model(t(x)) , 〈i, d〉 := t(x); runa(i, d)

where runa(i, d) selects the ith action from the set a = {a0, . . . , an} and runs it

with argument d:

runa0,...,an(i, d) , asm i = 0; a0(d) · · · asm i = n; an(d)

As an example, consider the pipeline from Figure 5.2. We recapitulate its

definition in GPL below and show its translation into GCL:

Action Definitions

set group , λg. grp := g

set port , λp. port := p

nop , λ(). asm true

Table Definitions

Group : 232 → {set group}

Agg : 232 → {set port, nop}

GPL pipeline

Group(ipv4.dst);

Agg(grp)

model7→

GCL Model

〈a, g〉 := Group(ipv4.dst);

grp := g;

〈b, p〉 := Agg(grp);

if(b = set port){

port := p

}{// else b = nop

skip

}

Observe that both tables Group and Agg have been replaced by function calls

that compute output variables a and d. After Group is called, we can ignore a
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since Group only has one action, and simply assign d to grp. Then we run the

Agg function to compute b and p. We then inspect b to determine which action

should be run. If b indicates the set port action, then port is assigned the action

data value p, otherwise, b is nop and nothing happens.

We prove that this translation is semantics-preserving.

Theorem 5.2.1 (Adequacy). JpKσ = Jmodel(p)Kσ

Proof. By induction on p. Let p = t(x), as the remaining cases are immediate or

by IHs. Let a = {a0, . . . , an}, and 〈j, d〉 = σ(t).

Jmodel(t(x))Kσ = J〈i, d〉 := t(x); runa(i, d)Kσ

= Jruna(j, d)Kσ

= Jasm i = 0; a0(d) · · · asm i = n; an(d)Kσ

= Jaj(d)Kσ

= Jt(x)Kσ

Our model is the first to precisely characterize the semantics of tables in a logical

formalism [72, 112, 108]. We will use it to generate precise symbolic representations

of GPL programs.

5.2.4 Symbolic Compilation

By Theorem 5.2.1, to generate a symbolic model of p ∈ GPL, we need only compile

its GCL model c = model(p). We rely heavily on previous work [46, 32] to produce

our symbolic compiler. Our first step is to normalize programs into the passive

form [46]. A program is passive if it does not have any assignments. We can

passify a program c by replacing assignments with assumes. Doing so requires
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minting a new variable index each time a variable is written, and doing some

careful bookkeeping to ensure that indices are synchronized across join points.

The function passify : GCL(T )×NVar → GCL(T )×NVar, takes in two arguments,

a GCL program c and a map I from variables to indices. It returns a passive

c′ and a map I ′ holding the maximum index for each variable. We define passify

below:

passify(x := e, I) , let J be I[x 7→ I(x) + 1] in

(asmxJ (x) = subst(I, e),J )

passify(asmϕ, I) , (asm I(ϕ), I)

passify(c1; c2, I) , let c′1, I1 be passify(c1, I) in

let c′2, I2 be passify(c2, I1) in

(c′1; c′2, I2)

passify(c1 c2, I) , let c′1, I1 be passify(c1, I) in

let c′2, I2 be passify(c2, I) in

let r1, r2,J be merge(I1, I2) in

(c′1; r1 c′2; r2,J )

where I : Var → N is a map from variables to natural indices. We define Z to

be the map that indexes each variable with 0. We always initialize passify with

Z. In the above function, each time we see an assignment x := e, we rename e

according to the current set of indices using a substitution function subst(e, I),

which returns an expression e whose variables have been indexed according to I.

We then increment the index for x. Translating assumptions (asmϕ) is similar, we

annotate all the variables in ϕ with their current indices, written subst(ϕ, I). The

sequence case is homomorphic: after passifying c1 we passify c2 with the updated

indices from c1.

The hard case is passifying choice (c1 c2), where we add so-called residuals
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r1 and r2 to each passified program disjunct (c′1 and c′2 above). These residuals

are computed by merge : NVar × NVar → GCL ×GCL × NVar which takes in the

indexing functions I1 and I2 that result from passifying c1 and c2 and returns

so-called residuals r1 and r2. The residuals synchronize the indices between c′1 and

c′2. The residual r1 finds the variables that have a lower maximum index in c′1 than

they do in c′2 and assumes a chain of equalities xi = xi+1 that “catch up” to the

max indices of c′2. The residual r2 is symmetric. We define merge formally below

merge(I1, I2) , let r1 be asm (
∧
{xi = xi+1 | I1(x) ≤ i < I2(x), x ∈ Var}) in

let r2 be asm (
∧
{xi = xi+1 | I2(x) ≤ i < I1(x), x ∈ Var}) in

let J be {x 7→ max{I1(x), I2(x)} | x ∈ Var} in

(r1, r2,J )

Note that the size of the added residuals is quadratic in the size of the input

program [46]. Of course the translation is semantics-preserving, after some book-

keeping to relate the lowest and highest indices with the inputs and outputs of the

original program [46].

To understand passify by example, let’s return to Figure 5.2, for which we

compute the following:

GCL Model

〈a, g〉 := Group(ipv4.dst);

grp := g;

〈b, p〉 := Agg(grp);

if(b = set port){

port := p

}{// else b is nop

skip

}

π1◦passify(−,Z)7−→

Passive Form GCL Model

asm 〈a1, g1〉 = Group(ipv4.dst0)

asm grp1 = g1;

asm 〈b1, p1〉 = Agg(grp1)

if(b1 = set port){

asm port1 = p1

}{// else b1 is nop

asm port1 = port0

}
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Notice the residual that was added to the nop branch of the choice operator.

Because the set port branch in the original program (above left) updated port to

d, the passive equivalent incremented port’s index to 1. Now, to synchronize the

indices across branches, and capture that the value remained unchanged, passify

adds the residual asm port1 = port0 to the nop branch.

Assuming that a program is in passive form, we can generate a linear-size

symbolic representation2. The following symbolic compilation function N :

GCL(T )→ T , precisely captures the executions of a passive program c:

N(asmϕ) , ϕ

N(p1; p2) , N(p1) ∧N(p2)

N(p1 p2) , N(p1) ∨N(p2)

The following shows the result of running N on the passified example program:

Passive Form GCL Model

asm 〈a1, g1〉 = Group(ipv4.dst0)

asm grp1 = g1;

asm 〈b1, p1〉 = Agg(grp1)

if(b1 = set port){

asm port1 = p1

}{// else b1 is nop

asm port1 = port0

}

N7−→

Symbolic Model

〈a1, g1〉 = Group(ipv4.dst0) ∧

grp1 = g1 ∧

〈b1, p1〉 = Agg(grp1) ∧

(b1 = set port ∧ port1 = p1

∨ b1 = nop ∧ port1 = port0)

With a symbolic pipeline in hand, we can check whether it satisfies a spec ϕ

via implication. However, we must be sure to update ϕ with respect to passify’s

2The standard presentation of compact symbolic compilation [46] also uses an additional wrong
execution function W which captures when programs violate assert statements. But GCL(T )
has no assertions, so it can never “go wrong.”
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output index mapping I, that is subst(ϕ, I). In our example, since I(port) = 1,

we check the following:

〈a1, g1〉 = Group(ipv4.dst0) ∧

grp1 = g1 ∧

〈b1, p1〉 = Agg(grp1) ∧

(b1 = set port ∧ port1 = p1

∨ b1 = nop ∧ port1 = port0)


⇒ port1 6= NONE

We define symbolic compilation using VCGen : GPL(T )× T → T , as shown

below:

VCGen(p, ϕ) , let c be model(p) in

let c′, I be passify(c,Z) in

N(c′)⇒ subst(ϕ, I)

We prove that VCGen is a precise ci-spec:

Theorem 5.2.2 (Symbolic Compilation). VCGen(p, ϕ) is a precise ci-spec for p

and ϕ.

Proof. By Theorem 5.2.1 and [46].

Hence, the sentence VCGen(p, ϕ) is a valid formula for validating configs.

However, this formula, being almost a line-for-line translation of the initial prob-

lem p |= ϕ, with the added complexity of indexed variables, is not a significant

improvement on the original program. Further, finding counterexamples for a con-

crete σ (i.e., satisfying N(c)∧¬subst(ϕ, I)) is NExpTime-complete [70]. Checking

such a formula on every control-plane update could incur significant latency.
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5.3 Computing Efficiently Control-Monitorable Sentences

Rather than repeatedly running NExpTime-complete checks, we propose a class

(ECMS) of first-order sentences that can be checked efficiently—i.e., with polyno-

mial complexity for a fixed set of typed functions F. Specifically, we will character-

ize the complexity of monitoring an ECMS in terms of its expression complexity,

a concept from database theory [1]. We then define an algorithm that computes

a precise ci-spec, by leveraging quantifier elimination (Qe), making sure to show

that this precise ci-spec is an ECMS. Finally, we show that any algorithm that

computes a ci-spec in ECMS can solve the Qe for UFBV. This equivalence means

that computing an ECMS may still incur a combinatorial blowup—i.e., the for-

mula we generate will have exponential size in cases where bit-blasting is required.

However, as shown in our experiments, we avoid bit-blasting in the common case.

So working with formulae in ECMS is useful in practice.

First, we define a syntactic set of sentences that are efficiently monitorable by

the control plane:

Definition 5.3.1 (Efficiently Control-Monitorable). A sentence ψ of UFBV over

a fixed set of functions F = {F1, . . . , Fn} is said to be efficiently control-monitorable

(ψ ∈ ECMS) if, for variable sets z = {z1, . . . , zn}, y = {y1, . . . , yn} and x ⊆ z ∪ y,

ψ can be written z1 = F1(y1) ∧ · · · ∧ zn = Fn(yn)⇒ ϕ(x) where ϕ ∈ QFBV. For

brevity, we write ψ as z = F(y)⇒ ϕ(x).

To calculate the expression complexity,3 one fixes the database, and expresses

complexity in terms of the size of the query. In contrast, to calculate the data

complexity, one fixes the query, and expresses complexity in terms of the size of

3Also called query complexity
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the database. The combined complexity expresses complexity in terms of the sizes

of both the query and the database [1]. In our setting, we focus on expression

complexity. First, we fix the control plane interface to be a set F = {F1, . . . , Fn}

and their associated types, e.g. Fi : 2wi → 2`i . With a fixed F, the number of

functions n, and every wi and `i are also fixed, which means a config σ comprises

finite functions between fixed-size domains. We show the expression complexity is

polynomial.

Theorem 5.3.1. For a fixed config σ, and ψ ∈ ECMS, checking σ |= ψ is polyno-

mial.

Proof. Let ψ ∈ ECMS. This means there is ϕ ∈ QFBV, and variable sets x,

y and z such that ψ = z = F(y) ⇒ ϕ(x) and x ⊆ y ∪ z. First, observe that

given a valuation µ : x → 2∗, checking |=µ ϕ(x) is polynomial in the size of ϕ—

simply evaluate the formula. Since σ is fixed, M = σ(F1)× · · ·×σ(Fn) has a fixed

size. Each element µi ∈ M corresponds to a valuation µi : z ∪ y → 2∗, and since

x ⊆ z ∪ y, we can write µi : x → 2∗. It suffices to perform the fixed number of

polynomial checks |=µi ϕ(x) for i = 1, . . . , |M |.

The analysis above also shows that the data complexity, and hence the com-

bined complexity, is exponential in the size of σ. However, this only captures

the uninteresting observation that in the worst case, a monitor must inspect every

combination of elements in a pipeline’s tables. The expression complexity captures

the complexity of each validation.

We show, in the remainder of this section, that rather than computing general

first-order-logic formulae, it suffices to compute formulae in ECMS. We do this by

showing that inferring a precise ECMS is formally equivalent to quantifier elim-
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ination (Qe). While quantifier elimination algorithms normally define Qe using

an existential quantifier variable and use structural recursion to define it over the

full grammar, it’s more convenient to use the universal variant of Qe as below:

Definition 5.3.2 (Quantifier Elimination). Given a formula ϕ(x0,x) ∈ QFBV,

with x0 ∈ Var, x ⊆ Var and x0 6∈ x, a solution to the quantifier elimination problem

is a formula ψ(x) on only the variables x such that ψ(x)⇔ ∀x0.ϕ(x0,x). We write

ψ(x) = Qe(∀x0.ϕ(x0,x)).

A corollary of our construction in the following sections will be that restricting

ci-specs to ECMS does not affect the expressiveness. That is, computing the

weakest ECMS is equivalent to computing the weakest first-order sentence.

5.3.1 Qe Computes Precise ci-specs

To infer a precise ECMS constraining configs σ such that p[σ] |= ϕ, we compile

p to a GCL program c, and then lift out the functions. We define a lift function

that, loosely speaking, separates out the control plane (i.e. the tables) from the

data plane (the forwarding behavior). To do this, we introduce ghost variables z

and y that capture the inputs and outputs of the tables t. Then we write z = t(y)

to nondeterministically capture all potential table rows—this space is collapsed to

the runtime key x in the data plane program. We use x to indicate the remaining

variables that occur in c. Formally we write lift(c) = 〈z = t(y), d〉 to indicate the

following, lifted in the expected way:

lift (〈a, d〉 = t(x); runa(a, d)) , 〈〈za, zd〉 = t(yx), asm yx = x; runa(ya, yd)〉
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Notice that the output program d has no uninterpreted functions, that is c′ ∈

GCL(QFBV). The relationship between d and c can be captured below:

(asm (z = t(y)) ; d) ≡x c (5.1)

where ≡x⊆ GCL × GCL relates programs that are equivalent on the variables

x. We can see this relationship by running lift on our example from Figure 5.2 as

below:

〈za, zg〉 = Group(y1)

∧

〈zb, zp〉 = Agg(y2)

asm y1 = ipv4.dst;

grp := zg;

asm y2 = grp;

if(zb = set port){port := zp}{skip}

The formula on the left “queries” the pipeline’s interface with the Group and Agg

tables, using the ghost variables y and z to capture the results. Then, the program

on the right uses these variables to capture the forwarding behavior. Below, we

recombine these components according to Equation (5.1):

〈a, g〉 := Group(ipv4.dst);

grp := g;

〈b, p〉 := Agg(grp);

if(b = set port){

port := p;

}{skip}

≡ipv4.dst,grp,port

asm

 〈za, zg〉 = Group(y1)∧

〈zb, zp〉 = Agg(y2)

 ;

asm y1 = ipv4.dst

grp := zg;

asm y2 = grp;

if(zb = set port){

port := zp

}{skip}

Notice that in the lifted program on the right we’ve lifted all function calls to

the start of the program. We then use the assumptions like asm y1 = ipv4.dst to

collapse the space of lookups to precisely those where we looked up the value of

ipv4.dst in the function Group.
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Because the lifting stage preserves equivalence on the relevant variables (Equa-

tion (5.1)), it will intercede after the modeling stage. To evoke the fact that lift

separates the control plane from the data plane, we will define a control plane

symbolic compilation function C : GPL → UFBV and a data plane symbolic

compilation function D : GPL×QFBV→ QFBV. We define these below:

C(p) , let c be model(p) in

let ϑ, d be lift(c) in

ϑ

D(p, ϕ) , let c be model(p) in

let ϑ, d be lift(c) in

let d′, I be passify(d,Z) in

let ϕ′ be subst(ϕ, I) in

N(d′)⇒ ϕ′

Both of these functions start the same, by modeling p ∈ GPL as a GCL program

c and then lifting the control plane ϑ out of the data plane d. The control plane

function C, stops here and returns ϑ. The data plane function continues its sym-

bolic compilation, by computing a passive version d′ of d by calling passify(d,Z)

(recall that Z zero-initializes all passivization indices). Then, the data plane func-

tion normalizes the spec ϕ corresponding to the output indices I, which produces

ϕ′. Finally, D returns the formula N(d′)⇒ ϕ′.

The following lemma shows that C and D precisely characterize pipelines:

Lemma 5.3.2 (Lifting). VCGen(p, ϕ) ⇐⇒ C(p)⇒ D(p, ϕ)

Proof. By Equation (5.1)

The final step is to use Qe to eliminate the packet variables x from D(p, ϕ).

Since D(p, ϕ) is a formula over the original data plane variables x as well as on the

ghost variables y and z, the result of using Qe to eliminate x, will be a formula

ψ(y, z) over just the variables y and z. In fact, a key result in the domain of logical
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abduction [35, 33] is that ψ(y, z) is the weakest formula on the variables y and z

such that ψ(y, z) ⇒ D(p, ϕ). Combining this weakness with the fact that Qe is

equivalence-preserving, we can see that Qe suffices to solve the ci-spec inference

problem.

Formally, we define a procedure PrecSpec(p, ϕ) as follows:

PrecSpec(p, ϕ) , C(p)⇒ Qe(∀x.D(p, ϕ))

where x = Var \y where y is the set of all ghost variables that occur in C(p). Said

another way, x is the set of indexed data plane variables.

Now, based on the observations we’ve made so far, we can prove that

PrecSpec(p, ϕ) precisely captures the control plane configs σ that make p satisfy

its spec ϕ:

Theorem 5.3.3. PrecSpec(p, ϕ) is a precise ci-spec.

Proof. By Lemma 5.3.2, [35, 33], and Definition 5.3.2.

Finally, by examining its syntax, we’ll see that PrecSpec(p, ϕ) ∈ ECMS!

Here’s how: since C(p) can be written as z = F(y), and since ϕ ∈ QFBV, then

Qe(∀x.D(p, ϕ)) is QFBV. Further, since PrecSpec(p, ϕ) is indeed precise, the

fact that it is also in ECMS means that we have not given up any precision in

restricting our ci-specs to be efficiently monitorable.

At first blush, it seemed that ci-spec inference would require us to learn arbi-

trary first-order logic formulae. We’ve shown here that it suffices to learn formulae

in ECMS, and specifically, that we need only eliminate quantifiers in the theory of

bitvectors.
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5.3.2 Precise ci-spec Inference in ECMS Solves Qe

Unfortunately, we can show that precise ci-spec inference in ECMS solves Qe in

the theory of bitvectors—whose best known algorithms [31, 7] require bit-blasting

the finite domain of quantification. Hence, for ci-spec inference, we also resort to

bit-blasting in the worst case.

Consider a formula ϕ ∈ QFBV. We want to compute Qe(∀x0. ϕ(x0,x)). To

do this, we will use the GPL program t(x) where t : 2|x1|+···+|xn| → {λ().skip}, and

compute its ci-spec w.r.t. ϕ(x0,x). Now, PrecSpec(t(x), ϕ(x0,x)) gives us the

following formula:4

〈za, zd〉 = t(y)⇒ Qe(∀x0,x.y = x⇒ ϕ(x0,x)) (5.2)

Notice that the call to runa(za, zd) has disappeared. This is because the choice to

run one of the actions in the singleton set {skip} will deterministically run that

single action. As a result, za and zd do not occur except for in the leftmost as-

sumption. So, we can use the so-called “one-point rule” (also known as destructive

equality resolution), to rewrite Equation (5.2) into the following:

Qe(∀x0,x.y = x⇒ ϕ(x0,x)) (5.3)

Next, we apply the one-point rule again and swap y for x, which then lets us

eliminate the innermost ∀x, since the variables in x no longer occur. We that the

following formula:

Qe(∀x0.ϕ(x0,x)) (5.4)

which is equivalent to our original sentence. Having just proved it, we state the

theorem below.

4Technically, PrecSpec computes a formula where each variable has a passive index of 0,
that is x00, x0, y0, but by erasing the indices, we get the formula shown in Equation (5.2)
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Theorem 5.3.4. PrecSpec(t(y), ϕ(x,y)) = ∀y.Qe(∀x.ϕ(x,y)) where t :

2|y1|+···+|yn| → {λ().skip}.

Proof. As above.

The downside of having shown the equivalence of Qe and ci-spec inference in

ECMS is that the best-known algorithms resort to bit-blasting in the worst case.

However, in what follows, we exploit domain insights to develop an algorithm that

can eliminate quantifiers effectively.

5.4 Programmatic Qe

Since inferring ci-specs is intractable in general, we pursue heuristic techniques

that work well in practice. A standard maneuver when dealing with large, in-

tractable problems is to decompose the problem into smaller, easier-to-solve, sub-

problems. We exploit the fact that ci-spec inference commutes with choice (i.e.,

). That is, given a GPL program p1 p2 and a spec ϕ, it is the case that

PrecSpec(p1 p2, ϕ)⇔ PrecSpec(p1, ϕ) ∧ PrecSpec(p2, ϕ). By reasoning in-

ductively, this relationship can be generalized over all paths: PrecSpec(p, ϕ) ⇔

C(p)⇒
∧
π∈paths(p) PrecSpec(π, ϕ). We define paths : GCL→ P(GCL) below:

paths : GCL→ P(GCL)

paths(x := e) , {x := e}

paths(asmϕ) , {asmϕ}

paths(c1; c2) , {π1; π2 | πi ∈ paths(ci), i = 1, 2}

paths(c1 c2) , paths(c1) ∪ paths(c2)
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Notice that we have defined paths on the GCL level. That is for a program

c ∈ GCL, paths(c) ⊆ GCL(T ) is the set of straight-line programs (aka paths)

through c. We then define paths(p) for a program p ∈ GPL by first compiling

p to its data plane-only representation using model and lift. That is paths(p) =

paths ◦ π2 ◦ lift ◦model(p). Further, we have defined π ∈ GCL(UFBV). We define

PrecSpec(π, ϕ) to be Qe(∀x.D(π, ϕ)), where x is the set of non-ghost variables

in D(π, ϕ).

5.4.1 Paths Produce Smaller QE Problems

Computing the ci-spec for a single path is much more tractable than doing so for

a whole program. Aside from being much smaller programs, aggressive compiler

optimizations are much more powerful on paths. For instance, we use standard

compiler transformations for dead code elimination and expression propagation.

The dead code elimination function dce : GCL×Var→ GCL×Var, at every step,

removes assignments x := e when x is not in the set of read variables R. It is

defined below:

dce(x := e(y), R) ,


〈asm true, R〉 x 6∈ R

〈x := e,y ∪ (R \ {x})〉 x ∈ R

dce(asmϕ(y), R) , 〈asmϕ(y),y ∪R〉

dce(c1; c2, R) , let c′2, R2 be dce(c2, R) in

let c′1, R1 be dce(c1, R2) in

〈c′1; c2, R1〉

Similarly, prop : GCL×GCL→ GCL propagates substitutions x := e by substi-

tuting e for x in the rest of the path. This substitution must be done carefully to

avoid “capture”. For an imperative path like this one, substitution stops once x
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appears on the left-hand side of an assignment. This definition differs from typical

definitions of constant or expression propagation, which need to merge sets of facts

at join points. Because we’re reasoning about straight-line code, the set of facts

never diverges. We define it formally below:

prop(x := e, c) , c[x 7→ e]

prop(asmϕ, c) , asmϕ; c

prop(c1; c2, c3) , prop(c1, prop(c2, c3))

These compiler optimizations are actually doing heuristic quantifier elimination

at the program level. Notice that after the lifting stage, control plane variables will

never occur in assignments, only the data plane variables will. So, using dce and

prop to eliminate as many assignments as possible before running Qe is a clear

advantage of path decomposition.

However, the ability to generate smaller and more-optimizable Qe instances

doesn’t mean much if there are exponentially many of them to solve. Since paths(p)

is exponential5 in the size of p, it remains intractable to compute PrecSpec(π, ϕ)

for every π ∈ paths(p).

Luckily, we don’t always need to examine every program path. In fact, we only

need to explore paths that violate ϕ. Since the ci-spec for a path that doesn’t

violate ϕ is >, then PrecSpec(c, ϕ) is equivalent to the ci-spec for only the

paths that violate ϕ. Let’s call this set of buggy paths B. In our experience

(Section 5.7.1), we’ve seen that the number of these “buggy” paths can be orders

of magnitude smaller than the size of paths(p).

Furthermore, we don’t even need to analyze every buggy path in B. In fact, our

experience has shown (Section 5.7.4) that the ci-spec for a single path generalizes

5The well-known path explosion problem.
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to solve many paths. For instance, if we added a parser to our example from

Figure 5.2 that either validated one of the main Layer 4 protocols, TCP or UDP,

then the ci-spec for either parser path would generalize to the other.

5.4.2 A Path-Based Iterative Strengthening Algorithm

Our algorithm, CegQe, iteratively strengthens a candidate ci-spec using coun-

terexamples. The procedure Strengthen takes in a spec ϕ, a candidate ci-spec

ψi, and a spec-violating path π |= ψi ∧¬ϕ, and computes a new candidate ci-spec

ψi+1 such that ψi+1 ⇒ ψi, and π |= ψi+1 ⇒ ϕ. We define Strengthen as follows:

Strengthenπ(ψ, ϕ) , ψ ∧PrecSpec(π, ϕ)

By definition, Strengthenπ(ψ, ϕ)⇒ ψ. Similarly, since π |= PrecSpec(p, ϕ)⇒

ϕ, then π |= Strengthenπ(ψ, ϕ) ⇒ ϕ, indicating that the strengthened ci-spec

prohibits π from violating ϕ.

The algorithm iteratively strengthens ψ until an SMT solver proves ψ is

stronger than D(p, ϕ). To maintain precision, Strengthenπ will never “over-

shoot” D(p, ϕ). That is, as long as π ∈ paths(p), the invariant D(p, ϕ) ⇒

Strengthenπ(ψ, ϕ) holds. This formula is similar to bf4’s necessity constraint

(which they write OK |= φ, where φ is a new candidate ci-spec). While bf4 checks

this constraint using an SMT solver after each operation, Capisce maintains this as

invariant, which holds because the conjunction of path-based ci-specs is equivalent

to the full program ci-spec.

We define the following set BadPathp to capture all paths π that witness the

insufficiency of ψ to prove D(p, ϕ). In practice, we use an SMT solver to produce
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one such path, when it exists.

BadPathsp(ψ, ϕ) , {π ∈ paths(p) | π |= ψ ∧ ¬D(p, ϕ)}

Now, the algorithm can be stated formally. For a program p, a spec ϕ, and a

candidate ψ, define:

CegQe(p, ϕ) ,

ψ ← >;

while π ∈ BadPathsp(ψ, ϕ) :

ψ ← Strengthenπ(ψ, ϕ);

return ψ

For any program p and spec ϕ, the algorithm CegQe(p, ϕ) terminates, because

the set of paths through p is finite. By initializing ψ to be > we ensure that we will

never overshoot the correct ci-spec. Similarly, the ψ produced by CegQe is the

most precise ci-spec. Correctness of CegQe comes from the fact that the final path

is equivalent to
∧
p∈B PrecSpec(π, ϕ) for some set of bad paths B ⊆ paths(p).

We sketch the proof of this algorithm below:

Theorem 5.4.1 (Correctness). PrecSpec(p, ϕ) ⇐⇒ C(p)⇒ CegQep,ϕ(>)

Proof Sketch. CegQe terminates because it explores a finite set of paths—the con-

tinued strengthening of the candidate solution ensures that it never explores the

same path twice. The forwards direction follows from the fact that CegQe(p, ϕ)

can be written as
∧
π∈B(PrecSpec(π, ϕ)), for some set of bad paths B ⊆ paths(p).

Since PrecSpec commutes with choice, the implication holds. The reverse di-

rection follows by the emptiness of BadPaths which implies CegQe(p, ϕ) ⇒

D(p, ϕ).
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Finally, we have C(p)⇒ CegQe(p, ϕ) ∈ ECMS since CegQe(p, ϕ) ∈ QFBV.

All told, we’ve been able to reduce the size of each expensive Qe sub-problem,

by decomposing the program into its component paths, and using aggressive com-

piler optimizations to eliminate variables at the program level.

5.5 Specifications for Data Planes

The standard specification mechanism in data plane verification is assume-assert

style specification [72]. Indeed, architectures [116, 54] for the P4 programming

language have built-in functions called assume and assert. Even though they

have no semantic effect on the program, programmers use these constructs with

verification tools [72, 2] that reason about intermediate states of the system. Since

GPL already has assumptions, we need only add assertions.

Unfortunately, adding assertions to GPL incurs a quadratic cost in the size of

the formula [46], even along single paths. Assertions, written astϕ, characterize

when programs “go wrong” by violating ϕ. The function W : GCL(T )→ T , orig-

inally defined by Flanagan & Saxe [46], symbolically characterizes these executions

for a passive program c ∈ GCL(T ). It is defined below:

W (astϕ) , ¬ϕ

W (asmϕ) , ⊥

W (c1; c2) , W (c1) ∨N(c1) ∧W (c2)

W (c1 c2) , W (c1) ∧W (c2)

The quadratic size comes from the sequence rule. A program c1; c2 can either go

wrong because c1 goes wrong (W (c1)), or because c1 goes right (N(c1)), and then

c2 goes wrong (W (c2)).
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Consequently, checking whether a candidate ψ suffices for a passive program

c, with asserts, means checking ψ ⇒ ¬W (c), which asks if ψ is sufficient to prove

that the program never goes wrong. Because the spec ϕ has become part of the

program (e.g. via a terminal ast statement), we don’t have an explicit spec ϕ to

reason about.

In the case that there is some π |= ¬ψ∧W (c), we know that π that contains at

least one violated assertion. Now we generate the following quantifier elimination

problem, which eliminates the data plane variables x from the wrong executions

(W ) of the path π:

Qe (∀x. ¬W (π))

Unfortunately, W (π) is quadratic in size [46]. In Section 5.4.2 we were checking

the linear-size N(π) ⇒ ϕ. Now, we much larger Qe instances. To sidestep this

growth, and maintain the compactness of the Qe sub-problems, we decompose the

problem even further.

Let’s proceed by example. For a path c = c1; astϕ1; c2; astϕ2, where c1 and c2

are ast-free, we would generate the following Qe problem:

Qe (∀x. (N(c1)⇒ ϕ1) ∧ (N(c1) ∧ ϕ ∧N(c2)⇒ ϕ2))

Observing DeMorgan’s laws and the distributivity of Qe and ∀ over conjunction,

this becomes:

Qe(∀x.N(c1)⇒ ϕ1) ∧ Qe(∀x.N(c1) ∧ ϕ1 ∧N(c2)⇒ ϕ2)

Projecting this reasoning back up into the program, each of these subproblems

corresponds the following conjunction of assert-free ci-spec inference problems:

PrecSpec(c1, ϕ1) ∧ PrecSpec(c1; asmϕ1; c2, ϕ2)
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In general, exploiting this distributivity lets us consider assert-final path prefixes.

Given a counterexample packet pkt , our path generation scheme produces the path

prefix that terminates in the first assertion that is violated. At the end, we find

that even in the presence of assertions we will only ever produce linear -size Qe

sub-problems (although there can be many such sub-problems).

5.6 Implementation

We have implemented a ci-spec inference library in OCaml called Capisce. Our

library exposes a GPL AST, which makes heavy use of smart constructors. Our

algorithm largely follows the structure outlined in the previous section. We discuss

here the implementation of path selection and quantifier elimination. We also

discuss how GPL can model real world pipeline programs.

Path Selection The BadPaths function in CegQe(p, ϕ) checks whether there

exist any buggy paths. To compute this check in practice, we use both an SMT

solver, and a tracing execution of the program. First, we use an SMT solver to

check SAT(ψ∧¬D(p)), which returns a valuation of the input variables—that is, a

packet pkt . We then define a tracing execution that runs pkt through the program

p, accumulating its execution trace π as it goes. We then use π to strengthen ψ.

Quantifier elimination To eliminate quantifiers, we rely on an ensemble of

state-of-the-art solvers: Z3 [31] and Princess [7]. In our experience, it seems that

Z3 is more efficient at bit-blasting, while Princess is better at eliminating formulae

with arithmetic operations (+, −, etc). We find that combining the respective
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strengths of these two solvers is highly effective. Rather than racing the solvers,

as is common, we rely on the fact that both solvers produce partial results when

they time out. We can then pass these partially-eliminated formulae between the

two solvers. We have found that Z3;Princess;Z3 generally suffices.

5.7 Experience

To assess the usefulness of Capisce and its ci-specs, we investigate the following

five research questions:

RQ1: Can CegQe to infer real safety properties?

RQ2: Are most program paths correct?

RQ3: Do ci-specs for individual paths generalize over many paths?

RQ4: Can ci-specs help programmers find bugs?

RQ5: How does Capisce compare to bf4?

In Section 5.7.1 we use Capisce to infer ci-specs for a suite of P4 programs collected

from previous work [36], answering RQ1 in the affirmative. Most ci-specs are

inferrable in a few seconds, with several taking hours. Two programs, fabric

and linearroad, reached our timeout of 24 hours, without having terminated.

However, with simple fixes to each program, we can infer their ci-specs. We discuss

these examples in Section 5.7.5.

To answer RQ2 and RQ3, which refer to the guiding assumptions about the

prevalence of bugs, we measure the proportion of paths that are covered after each

strengthening step of CegQe. Our analysis in Section 5.7.4 shows that for the
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programs we analyzed, 40-96% of paths were initially correct. We also can see

that the ci-spec for individual paths can generalize very well—in some cases over

thousands of other paths.

To answer RQ4, we qualitatively analyzed the ci-specs Capisce computed. In

Section 5.7.2, we discuss the programs that had absurd (⊥) ci-specs, that is, there

was some buggy packet for every possible config. We were able to analyze these

programs and fix their errors. We also analyzed the nontrivial specifications (Sec-

tion 5.7.3), which revealed several hitherto-unknown bugs in the source programs.

Further, a local analysis of fabric, on which Capisce timed out, directed us to fix

bugs in its access control logic (Section 5.7.5).

To answer RQ5, we compared Capisce with bf4 on our suite of programs

(Section 5.7.6), and found that while Capisce is often much slower than bf4, its

computed ci-specs are much safer.

We ran our experiments on a 64-core machine, with Intel Xeon Silver 4216

CPUs @ 2.10GHz, running Ubuntu 22.04. Each experiment was single-threaded.

5.7.1 Capisce in Practice

To understand the effectiveness of Capisce on real-world programs, we inferred

Capisce for the programs used as benchmarks in previous work [36]. These bench-

mark programs comprise both research and industrial programs that are publicly

available on Github.

First, we ran Capisce’s inference with respect to two well-studied [72, 36, 37]

properties in data plane programming. The first, called Header Validity, asserts
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Program Program Paths Result Time (s) #Exp Size %Explored

Absurd Programs
ts-switching 21 ⊥ 0.160 2 1 0.095
mc-nat 39 ⊥ 0.089 1 1 0.026

Fixes to Absurd Programs
ts-switching-fixed 21 > 0.030 0 1 0.0
mc-nat-fixed 39 > 0.027 0 1 0.0

Trivial Programs
resubmit 9 > 0.028 0 1 0.0
netpaxos-acceptor 116 > 0.030 0 1 0.0
ecmp 102 > 0.030 0 1 0.0
hula 3629 > 0.068 0 1 0.0
ndp-router 3843 > 2.9 0 1 0.0

Nontrivial Programs
arp 95 ϕ 5.0 0.016 349 0.17
heavy-hitter-2 267 ϕ 0.29 3 26 0.011
heavy-hitter-1 327 ϕ 0.60 7 90 0.021
flowlet 649 ϕ 1.8 9 127 0.014
simple nat 66531 ϕ 5.2 54 1421 0.00081
07-multiprotocol 54459 ϕ 16 143 3138 0.0026
netchain 26726780 ϕ 2.9× 103 264 11658 9.9× 10−6

linearroad 54477696 timeout
fabric 133365047559893 timeout

Spec Smell Program Fixes
heavy-hitter-1-fixed 327 ϕ 0.63 7 107 0.021
linearroad-fixed 54477696 ϕ 5.9× 104 3236 179885 5.9× 10−5

fabric-fixed 133365047559893 ϕ 1.2× 103 653 41140 4.9× 10−12

Table 5.1: Experience with using Capisce to check Header Validity on a broad
range of P4 programs.

that every header h is valid every time h.f is read. The second, called Determined

Forwarding, every packet is assigned forwarding behavior. In V1Model P4, which

we use for our examples, we can check determined forwarding by ensuring that the

variable std metadata.egress spec is assigned a value. As previous work has

shown [37, 72], satisfying these properties requires complicated invariants on the

control plane configs that potentially involve multiple tables, which makes them

excellent benchmarking properties. The results can be seen in Tables 5.1 and 5.2.

The “Result” column categorizes the result of running CegQe on the program:
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Program Program Paths Result Time (s) #Exp Size %Explored

Absurd Programs
ecmp 102 ⊥ 0.320 4 1 3.9
fabric 133365047559893 ⊥ 7.3 5 1 3.7× 10−12

netchain 26726780 ⊥ 27 7 1 2.6× 10−5

Trivial Programs
arp 95 > 0.027 0 1 0.0
linearroad 54477696 > 0.054 0 1 0.0
simple-nat 5548 > 0.034 0 1 0.0

Nontrivial Programs
resubmit 9 ϕ 0.016 2 17 22
ts-switching 21 ϕ 0.10 1 4 4.8
mc-nat 39 ϕ 0.27 3 21 7.7
netpaxos-acceptor 116 ϕ 0.12 1 4 0.86
heavy-hitter-2 267 ϕ 88 15 233 5.6
heavy-hitter-1 327 ϕ 0.10 11 187 3.4
flowlet 649 ϕ 79 15 490 2.3
hula 3629 ϕ 0.39 1 9 0.028
ndp-router 3843 ϕ 40 36 824 0.94
07-multiprotocol 54459 ϕ 30 232 5034 0.43

Spec Smells & Fixes
ecmp-fixed 102 ϕ 0.28 3 34 2.9
mc-nat-fixed 27 > 0.029 0 1 0.0

Table 5.2: Experience with using Capisce to check Determined Forwarding on a
broad range of P4 programs.

> indicates that CegQe returned true; ⊥ means that CegQe returned false,

and ϕ captures everything in between. The “Time” column presents the number

of seconds to 2 significant figures. We also report the number of paths through

the original program, as well as the number (#Exp) and percent (%Explored) of

concrete paths that CegQe explored.

Observe, first, that most of our programs have non-trivial and non-absurd

specifications. These are programs that would have been rejected by standard

verifiers [38, 72, 108, 112]. Second, observe that most of these programs have rea-

sonable solve times—a few seconds to a few minutes. Even for the larger programs
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that have hundreds of millions to quadrillions of paths, we are only exploring a

minute fraction of those paths.

5.7.2 True Data-Plane Bugs

For programs that produced empty control plane properties (⊥), we inspected the

programs to understand the errors. For Header Validity, many of these programs

with true data plane bugs had made implicit assumptions about the packets that

would successfully pass the parser, which is a well-documented pattern [37]. We

describe how we incorporated these assumptions in the Section 5.7.2. Conversely,

for programs with determined forwarding bugs, the fix is to specify that by default

the packet should be dropped at the start of egress processing, which trivializes all

ci-specs.

Header Validity

In this section, we discuss the true data-plane bugs that we found in the mc-nat

program. The mc-nat program is an industrial R&D program. The parser for this

program performs standard Ethernet and IPv4 parsing, which means that at the

start of the pipeline, Ethernet is known to be valid, but IPv4 may or may not be.

The error occurs in the first table set mcg shown below. Its key is ipv4.dstAddr,

and therefore to instrument it for Header Validity, we have asserted the validity of

ipv4 (top right), which is not guaranteed by the parser (below left).
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// Table Definitions
set_mcg : bit <32> -> {...}
// Parser
eth.isValid = 1;
if (eth.type == 0x0800){

ipv4.isValid := 1; ...
} else {

ipv4.isValid := 0; ...
}
...

// Buggy Pipeline
assert(ipv4.isValid = 1); // error!
set_mcg(ipv4.dstAddr); ...

// Fixed Pipeline
assume(ipv4.isValid = 1); // fix!
assert(ipv4.isValid = 1);
set_mcg(ipv4.dstAddr); ...

After inspecting the program, we concluded that the engineers only intended

for this program to run on IPv4 packets. We realize this apparent assumption by

adding an assume statement (shown above on the right). With this assumption,

the assertion follows immediately, and Capisce returns the ci-spec true. The results

for the fixed program are reported in Table 5.1 under mc-nat-fixed. The bug in

ts-switching has a similar character and similar fix.

Determined Forwarding

We also found true violations of Determined Forwarding. One such example can be

found in the ecmp program. Improving on the previous example, the ecmp program

does guard the accesses to the optionally-valid ipv4 header with an if statement.

The problem is that when the ipv4 header is invalid, no code is run, which means

that the forwarding behavior is not determined. The following presents an outline

of the ecmp program.
// Table Definition
table ecmp_group : bit <32> -> { ... }
// Pipeline
determined := 0;
if (ipv4.isValid == 1 && ipv4.ttl > 8w0) {

ecmp_group(ipv4.dst); // may or may not determine forwarding
...

} else {
<does NOT determine forwarding >

}
assert (determined == 1); // violated when the else branch runs
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This bug has several fixes. We could set all packets to be dropped at the start

of the pipeline, or we could manually determine the forwarding behavior in the else

branch. After applying the latter fix, to produce ecmp-fixed, Capisce computes

a sensible ci-spec in 280ms.

5.7.3 Bugs Found by Inspecting ci-specs

For most programs, Capisce computes non-trivial and non-absurd ci-specs (indi-

cated by ϕ in Tables 5.1 and 5.2). We manually analyzed these specs, which gave

us new insights about the programs. Concretely, we were able to discover real bugs

in the programs. Borrowing the idea of code smells, we identify some simple “spec

smells” that we have used to find bugs.

The first spec smell, called prohibited action, occurs when the inferred ci-spec

prohibits one of the tables actions from ever occurring. It would be unusual for

a programmer to implement an action that must never be used. The most likely

explanation is that the program has a bug. The second smell, called obligatory

wildcard, occurs when the inferred ci-spec requires a table to always wildcard one

of its keys. Again, it would be unusual to declare a table with a useless key.

We return to mc-nat, which exemplifies the prohibited action code smell

when analyzed w.r.t. the Determined Forwarding property. We then analyze

heavy-hitter-1 which exemplifies the obligatory wildcard code smell.
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Prohibited Action

Returning to the mc-nat program, we will set mcg, more closely. It has the fol-

lowing three actions: set output mcg, drop, and nop shown below.
// Definitions
action set_output_mcg (mcast_group : 16) =

meta.mcast_group := mcast_group
action drop () = std_meta.egress_spec := 511
action nop () = skip
table set_mcg : bit <32> -> { set_output_mcg , drop , nop }
// Pipeline , IPv4 may or may not be valid
set_mcg(ipv4.dst); ...

Of set mcg’s actions, only one that sets the egress specification: drop. Fur-

ther, set output mcg sets meta.mcast group, which triggers an assignment to

the egress spec field later in the pipeline. Finally, nop does neither, and the

egress spec remains undefined. As a result, Capisce computes a spec that pro-

hibits set output mcg from running the nop action. This is a prohibited action

smell, and a true bug. To fix it bug, we can simply remove nop from the actions

list. After doing this, Capisce computes the trivial ci-spec—that is, >—in 29ms.

Obligatory Wildcard

In the heavy-hitter-1 program, we find an example of the obligatory wildcard

spec smell when analyzing it w.r.t. Header Validity. The ci-spec computed by

Capisce forces the ipv4.dst address to be wild-carded. We can examine the

pipeline below to see why:
// Table Definitions
table count_table : bit <32> -> { ... }
table ipv4_lpm : bit <32> -> { ... }
table forward : bit <32> -> { ... }
// Pipeline --- ipv4 may or may not be valid
// To fix , assume ipv4.isValid = 1
count_table(ipv4.dst); ipv4_lpm(ipv4.dst); forward(nhop_ipv4);

After running a parser that optionally parses the IPv4 header (similar to the one
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Figure 5.5: Path coverage over time for Header Validity analysis of programs with
fewer than 100k paths.

shown in Section 5.7.2 for mc-nat), the heavy-hitter-1 program immediately

reads the ipv4.dst address. Since the ipv4 header may be invalid, count table

must not read from it. Capisce recognizes this and forces count table to wild-card

its key. It seems strange that a single-key table should not be allowed to use any

of its packet-classification power. This is likely not intended by the programmer,

so we declare it a bug. We can fix it by assuming ipv4’s validity. After doing so,

Capisce computes a sensible spec in 630ms.

5.7.4 Analyzing Path Decomposition

The majority of our programs had non-trivial ci-specs. Even for programs with

quadrillions of paths, Capisce explores only a small fraction of them. In the ex-

treme, for fabric-fixed, while we do explore nearly 41k paths, this is 12 orders

of magnitude smaller than the number of paths through the program itself. While

this fraction is extreme for our dataset, the rightmost columns of Tables 5.1 and 5.2

show that Capisce explores a small fraction of paths.
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While Table 5.1 shows that it suffices to explore relatively few of a pro-

gram’s paths, we want a more fine-grained answer to our guiding assumptions

(RQ2 & RQ3). How many paths are actually buggy? How many paths are

covered by each strengthening step?

To answer these questions, we measure how path coverage evolves as the candi-

date ci-spec gets stronger for a few of our small programs with nontrivial ci-specs.

After the run finished, we measured the proportion of paths that satisfied the

specification after assuming the new candidate spec—we call this proportion path

coverage. We restricted ourselves to programs with fewer than 100k paths to make

this analysis tractable.

The results of this analysis are shown in Figure 5.5. Notice the high proportion

of safe paths when the inference time is 0. At the start the candidate ci-spec is >,

so the path coverage metric at this point is measuring the proportion of safe paths.

The proportion of safe paths is very high, the lowest being 40% and the highest

being nearly 95%. This empirical evidence supports our first guiding assumption:

programs are usually correct. Second, notice the steep inclines early towards the

left of the figures. These indicate that strengthening is highly effective—many

other paths were covered by PrecSpec(π, ϕ). For instance, in the simple-nat

run, the ci-spec ψ2 that was computed by the second bad path, π2, covered ap-

proximately 10% of the remaining buggy paths. This empirical evidence supports

our second guiding assumption: the ci-spec for a single path suffices to cover many

other paths.
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5.7.5 Limitations

So far, we’ve seen that despite the theoretical difficulty of ci-spec, Capisce computes

useful ci-spec for real-world programs. Unfortunately, because ci-spec inference is

theoretically difficult, it is unsurprising that Capisce hits the 24h timeout on 2

programs: linearroad and fabric. However, these timeouts can be considered

their own “spec smells.” In diagnosing why these programs reached the timeout,

we found issues in the code. After fixing them, Capisce produced ci-specs.

Fabric

ONOS’s fabric.p4 is a production-grade L2/L3 data plane program. Originally

used as a target for an internal API, it has evolved to be a mid-level abstraction

layer [22], as well as support higher-level user plane functionality [73].

We were unable to compute a ci-spec for fabric in 24 hours (in fact, it took

16 days). In analyzing the ci-spec for subprograms, we detected the obligatory

wildcard code smell in the acl table. Concretely, the ci-spec forces the acl table to

always wild card icmp.type and icmp.code. This is because there is no way to for

the controller to ensure that hdr.icmp is always valid.

The issue arises in fabric’s treatment of tunneling. After running the meta-

data initialization below on the left, lkp metadata holds the innermost valid IPv4

protocol and ICMP header data, as shown in the type and code below:
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// Metadata Initialization
if (inner_ipv4.isValid = 1){

lkp.ip_proto := inner_ipv4.proto;
if (inner_icmp.isValid = 1){

lkp.icmp_type := inner_icmp.type
;

lkp.icmp_code := inner_icmp.code
;

} else {}
} elif (ipv4.isValid = 1) {

...
lkp.ip_proto := ipv4.proto;
if (icmp.isValid = 1) {

lkp.icmp_type := icmp.type;
lkp.icmp_code := icmp.code;

} else {...}
} else {...}

// Buggy Table Keys
acl(eth_type ,

lkp.ip_proto , ...,
icmp.type, // buggy!
icmp.code, // buggy!
... );

// Fixed Table Keys
acl(eth_type ,

lkp.ip_proto , ...,
lkp.icmp_type , // fix!
lkp.icmp_code , // fix!
...);

Now, in the acl table on the right, even though both eth type.value and

lkp.ip proto appear in the keys, they are not sufficient to determine the validity of

icmp. Together, these two keys can only determine that either icmp or inner icmp

is valid, but not which. Consequently, reads to the icmp header reads must be

wild-carded. In the fixed version of the program, fabric-fixed, we replaced icmp

and icmp code with their respective lkp counterparts. With these fixes, Capisce

computes its ci-spec in about 20 minutes.

Linearroad

Despite our best efforts to minimize Qe problem instances, linearroad’s use of

complex machine arithmetic causes our ensemble of Qe solvers to resort to bit-

blasting. This kind of computation is not typical in data plane programs. In fact,

linearroad is an experimental program that was written to evaluate use of P4 for

implementing streaming database queries [60].

The complex machine arithmetic arises in the update ewma spd table, which

computes an estimated weighted moving average (EWMA). The relevant pieces of

it are shown below:
seg_meta.ewma_spd :=

seg_meta.ewma_spd * 96 + pos_report.spd * 16 >> 7
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...
check_toll (..., seg_meta.ewma_spd , ...)

Since the value of the complicated machine arithmetic expression on the left

flows into the key of the CheckToll table, we will need to reason about the possible

values of seg meta.ewma spd. For instance, there are certain values, like 0xFE00,

that will never be assigned to seg meta.ewma spd, this causes solvers to bit-blast

to compute these values. However, in our inspection of the source code and the

test cases, it’s clear that the programmers did not intend for there to be any

correctness requirements on this key. Capisce provides an annotation mechanism

for keys that allows us to avoid bit-blasting and generate possibly less precise

ci-specs. Programmers can annotate specific table keys as unconstrainable, which

means that the ci-spec cannot reject configs based on the value of these keys. After

marking seg meta.ewma spd unconstrainable, Capisce produces a ci-spec in under

17 hours, after exploring nearly 180k paths.

5.7.6 Comparison to bf4

We compared Capisce to the most relevant tool in previous work, bf4. To do this,

we serialized the programs in our benchmarks as P4 programs and passed them

into bf4.

To showcase Capisce’s improvement over bf4, we analyzed Header Validity

and Determined Forwarding over the benchmark suite programs that both tools

agreed had bugs.6 We used bf4 to report the number of “bugs” (a.k.a. violable

assertion points) that were reachable both before assuming the inferred ci-spec.

6For instance, fabric is omitted because bf4 incorrectly marks it bug-free. Similarly, hula is
excluded because bf4 incorrectly detects bugs. We manually verified these analyses by inspecting
the P4 code.
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Figure 5.6: Comparing analysis capabilities of bf4 and Capisce w.r.t time (bottom)
and bugs controlled (top). Note the logarithmic y-axes on the time charts.

Then, each tool computed its ci-spec and reported the number of reachable bugs

that remained. If a bug was not reachable after inferring the ci-spec, we say it was

controlled. The results can be seen in Figure 5.6.

First, observe that for larger programs, bf4 is orders of magnitude faster than

Capisce. Note that the bar graphs at the bottom of Figure 5.6 have logarithmic

y-axes. However, bf4 can only control a fraction of the bugs that Capisce can.

For Header Validity, while Capisce can control 96% of bugs, bf4 can only control

40% of bugs. The only bugs that Capisce cannot control are the bugs for which it

times out. For Determined Forwarding, Capisce controls 100% of bugs, while bf4

controls only 1 out of 13 bugs for the programs in our benchmark suite.

In comparing Capisce with bf4, we have seen that with its extended run-

times, Capisce can control many more bugs than can bf4. This is unsurprising, as
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tools have different goals: bf4 quickly computes necessary ci-specs that maximize

the number of controlled bugs, while Capisce produces safe (and indeed precise)

ci-specs—that is, Capisce’s ci-specs control all bugs.
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Part III

Verified Configuration
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CHAPTER 6

AUTOMATICALLY CONFIGURING THE DATA PLANE

The network control plane plays a similar role in modern systems as a classi-

cal OS kernel. It manages resources such as end-to-end forwarding paths, maps

incoming traffic onto those paths, and enforces policy such as ensuring isolation

between tenants in a public cloud.

One challenge that complicates the design of the control plane is dealing with

data plane heterogeneity. Much as an OS kernel manages hardware resources for a

variety of peripherals, the network control plane manages hardware resources for

a variety of data planes. Most network operators purchase equipment from mul-

tiple manufacturers to avoid lock-in, which results in devices with heterogeneous

feature sets, and even devices manufactured by the same vendor tend to evolve

over time. This heterogeneity manifests as complexity throughout the control

plane, appearing in low-level drivers and SDKs, device OSes (e.g., SONiC [106],

FBOSS [26], Stratum [109]), higher-level APIs (e.g., OpenFlow [76], OpenCon-

fig [88], P4Runtime [27]), and even network applications.

As an example, switches based on Broadcom ASICs such as Trident2, Toma-

hawk and Qumran-MX all expose an OpenFlow-like API to SDN controllers (or

more precisely, the OF-DPA [90] abstraction). However, due to differences in the

chips, the API behaves in subtly different ways on various devices. For instance,

the Termination MAC table, which determines whether to route packets or bridge

them, appears in all three devices but behaves differently on Trident2/Tomahawk

versus Qumran-MX—the former supports matching on the ingress port while the

latter does not. This discrepancy has led to bugs: before a special case was added

to the ONOS controller, multicast traffic on Qumran-MX devices was flooded out
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on all ports rather than being forwarded to the proper multicast groups [94].

This anecdote is just one example of a more pervasive problem. The OF-DPA

API specification [90] is more than 150 pages of English prose. The ONOS devel-

opment team took two years to validate Qumran-MX switches and certify them

as production-ready. This effort included multiple iterations of testing and bug

fixing to port the Tomahawk driver to Qumran-MX, even though the devices come

from the same vendor, implement the same protocols, and expose the same control

plane abstractions. In practice, the problem of mapping abstract specifications of

forwarding behavior down to real-world targets seems too hard to solve by hand.

Control Plane Synthesis. This paper presents a different approach to manag-

ing data plane diversity. Rather than relying on careful engineers to manually craft

bug-free mappings from high-level abstractions to low-level targets, we show how

to automate this task using program synthesis. More precisely, we develop Avenir,

a system that automatically translates control plane operations written against an

abstract forwarding specification (e.g., OF-DPA), into lower-level operations for a

physical target (e.g., Qumran-MX).

Our approach proceeds in two steps. First, we use the P4 language [20] to

model the behavior of the abstract and target devices. Although P4 was originally

designed as a domain-specific language for programming devices like Barefoot’s

Tofino switch, it is also being used as a specification language for fixed-function

devices (e.g., at Google [118]). For our purposes, what matters is that P4 provides

a precise, bit-level specification of data plane behavior that can be mechanized

using an SMT solver [72]. Hence, when P4 is not sufficiently expressive to model

the pipelines’ behavior, our approach should still be applicable. For example, one

could work with other packet-processing languages like NPL, eBPF, or vendor
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SDKs. Second, we use counterexample guided inductive synthesis (CEGIS) [105]

to translate the abstract control plane operations, such as inserting entries into a

match-action table, into equivalent physical operations. Our synthesis algorithm is

provably sound (i.e., if it succeeds, the abstract and target behaviors are guaran-

teed to be equivalent) and complete (i.e., if there a translation for a given operation,

Avenir finds it).

At a technical level, we exploit the insight that data plane devices are fun-

damentally simple. When modeled as programs, they lack complex features like

pointers and loops (parser state machines and uses of recirculation can be finitely

unrolled in practice). Although data planes exhibit complexity in other dimen-

sions, such as the number of protocols or table entries they support, the amount

of processing they perform on any given packet is limited. Hence, it is possi-

ble to model their behavior using simple, loop-free programs that are amenable

to analysis using automated solvers. In particular, P4’s match-action tables can

be treated as program sketches—i.e., programs populated with unknown variables

called holes. The CEGIS loop synthesizes table operations by inductively filling in

the program’s holes. The controller interacts with these tables incrementally: table

entries are usually not changed wholesale, but in small batches. We incrementally

synthesize individual control plane operations rather than full tables, which greatly

improves Avenir’s efficiency.

However, even if one does synthesis incrementally, scaling up to real-world pro-

grams remains a significant challenge. Program synthesis has often been used in

offline settings, where performance is not a critical concern. However, a typical

control plane might modify a table every few milliseconds. To enable online oper-

ation, Avenir incorporates heuristic optimizations such as ignoring existing table
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rules (when possible), and learning “templates” that cache repeated patterns and

avoid unnecessary calls to the SMT solver.

Implementation and Evaluation. We have built an implementation of Avenir

in OCaml and Z3, and evaluated its effectiveness and scalability. In particular, we

used Avenir to perform a “reboot” load test from the ONOS controller with mod-

erate overhead: ONOS takes 15 minutes to generate 40k abstract IPv6 forwarding

rules while our tool translates the insertions to a Broadcom pipeline in about 12

minutes. We conducted a series of experiments in which we retarget control planes

from one pipeline to another, and show that generated rules successfully forward

packets on the Bmv2 software switch. Finally, to assess Avenir’s scalability, we

ran experiments on synthetic microbenchmarks.

Contributions. This paper presents Avenir, a practical control plane synthesis

tool based on the following contributions:

• We present synthesis algorithm that incrementally computes changes to data

plane operations, motivated by examples in real-world control planes.

• We formalize our synthesis algorithm and prove (in the appendix) that it is

sound and complete.

• We present optimizations that leverage incrementality and domain insights to

accelerate synthesis.

• We discuss an implementation and show through case studies and microbench-

marks that Avenir synthesizes control plane operations correctly with modest

overheads.
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AVENIR	

Control	
	Plane	

		Logical
			pipeline	edits

Inductive	Synthesis

Verification

ABSTRACT	PIPELINE
Match(eth.dst) Action

0xb 0x753318a0

* nop()

Match(...) Action

* drop()

Match(ipv4.dst) Action

10.0.0.1 1

* nop()

			Candidate	Impl.

?1	=	0xb
?2	=	0x753318a0
?3	=	10.0.0.1	...

Data	
Plane	

TARGET	PIPELINE
Match(eth.dst) Action

0xb

* nop()

Match(...) Action

* drop()

Match(meta.nexthop) Action

?5 ?6
* drop()

Match(ipv4.dst) Action

10.0.0.1 1

* nop()

Counterexample

	eth.dst	=	0xb
	log_egress	=	1
	phys_egress	=	0

0x753318a0

Figure 6.1: Avenir maps control plane operations for an abstract pipeline into
corresponding operations for a target using sketch-based synthesis. The synthesis
loop alternates between verifying the correctness of a candidate implementation
and learning from counterexamples to generate a better one; the holes (e.g., ?5) in
the target sketch denote missing values that are filled in using an SMT solver.
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Pipe1
table l2_fwd {

key={eth.dst}
action ={ set_out }}

table l3_fwd {
key={ipv4.dst}
action ={ set_out }}

apply {
l2_fwd.apply();
l3_fwd.apply();

}

Pipe2
table l2_fwd {

key={eth.dst}
action ={ set_meta }}

table l3_fwd {
key={ipv4.dst}
action ={ set_meta }}

table lag {
key={meta};
action ={ set_out}

}
apply {

l2_fwd.apply();
l3_fwd.apply();
lag.apply()

}

Pipe3

table l2_fwd {
key={eth.dst}
action ={ set_m1 }}

table l3_fwd {
key={ipv4.dst}
action ={ set_m2 }}

table lag {
key={m1;m2};
action ={ set_out}

}

apply {
l2_fwd.apply();
l3_fwd.apply();
lag.apply()

}

OBT
table fwd_table { key={eth.dst;ipv4.dst} action = {set_port} }
apply { fwd_table.apply () }

Figure 6.2: Pipelines used in example scenario.

(Pipe1 ⇒ Pipe2)

for each ρ in L2 or L3 do
if ρ.table = L2 fwd then

L2 fwd.add(ρ.keys, set out(ρ.out))
else :

L3 fwd.add(ρ.keys, set meta(ρ.out))
fi;
LAG.add(ρ.out, set out(ρ.out))

(Pipe1 ⇒ Pipe3)

for each ρ in L2 do
L2 fwd.add(ρ.keys set meta(ρ.out))
LAG.add((ρ.out, ∗), set out(ρ.out))

for each ρ in L3 do
L3 fwd.add(ρ.keys set meta(ρ.out))
LAG.add((∗, ρ.out), set out(ρ.out))
for each ρ′ in LAG do
LAG.add((ρ′.m1, ρ.out), set out(ρ.out))

Figure 6.3: The Status Quo Manual translations from Pipeline 1 to Pipelines 2
and 3. Avenir automates theses translations entirely

6.1 Background and Motivation

As shown in Figure 6.1, Avenir sits between the controller and the data plane,

exposing an interface based on an abstract pipeline to the SDN control plane. It

intercepts the control operations, translates them to the target pipeline, and passes

results to the switch agent to install on the target device. Note that because Avenir
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(OBT ⇒ Pipe1)

for each ρ in fwd table do :
if ρ.ipv4.dst = ∗ then

L2 fwd.add(ρ.ipv4.dst, set out(ρ.out))
elif ρ.eth.dst = ∗ then

L3 fwd.add(ρ.eth.dst, set out(ρ.out))
else :

Failure!
fi

(OBT ⇒ Pipe2)

for each ρ in fwd table do :
if ρ.ipv4.dst = ∗ then

L2 fwd.add(ρ.ipv4.dst, set out(ρ.out))
elif ρ.eth.dst = ∗ then

L3 fwd.add(ρ.eth.dst, set meta(ρ.out))
LAG.add(ρ.out, set out(ρ.out))

else :
Failure!

fi

(OBT ⇒ Pipe3)

for each ρ in fwd table do :
if ρ.eth.dst = ∗ then

L2 fwd.add(ρ.ipv4.dst, set out(ρ.out))
elif ρ.ipv4.dst = ∗ then

L3 fwd.add(ρ.eth.dst, set meta(ρ.out))
LAG.add(ρ.out, set out(ρ.out))

for each ρ′ in LAG do
LAG.add((ρ′.m1, ρ.out), set out(ρ.out))
else :

Failure!
fi

Figure 6.4: The Status Quo: Manual translations in pseudocode from “one big
table” (OBT ) to Pipelines 1 through 3.
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works with an abstract notion of a pipeline, it could be used at multiple levels of

abstraction—e.g., to implement a driver for a given switch, an abstraction layer

like SAI, or even at higher layers of the SDN controller. Likewise, because Avenir

operates on switch-by-switch granularity, it can expose different abstract pipelines

for different targets. Avenir’s synthesis algorithm is sound and its solutions are for-

mally verified, which eliminates the potential for subtle bugs caused by the inherent

complexity of the problem, assuming the specifications are correct. Avenir’s algo-

rithm is also complete—i.e., given sufficient time, it is guaranteed to find a correct

sequence of target operations if it exists.

Status Quo: Manual Control Plane Mappings. Consider a simple running

example based on ONOS that illustrates the need for a control plane synthesis

tool. Suppose that each switch implements the simple L2-L3 pipeline indicated by

Pipe1 in Figure 6.2. In this pipeline, the output port is set based on the Ethernet

and IPv4 destination addresses in the corresponding tables.

As the network matures, its engineers decide to add additional physical data

planes—e.g., to incorporate a new generation of hardware or to avoid vendor lock-

in. For instance, the pipeline Pipe2, shown in Figure 6.2, adds a layer of metadata

indirection to the physical device to support link aggregation.

To avoid disrupting the control plane, which likely consists of hundreds of

thousands of lines of code,1 the engineers write a driver that translates operations

written for Pipe1 into operations for Pipe2. In this case, the driver, shown on the

left of Figure 6.3, is relatively simple: for each rule, it simply copies the output

port into meta and inserts a row into the LAG table effectively copying the value

1ONOS has currently about 611k lines of Java code [101, 86].
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of meta into the output port.

Now, suppose the engineers decide to support a third pipeline (Pipe3 in Fig-

ure 6.2), which sets a separate metadata field in each table. The translation (on the

RHS of Figure 6.3), is also simple, but requires some care to write—in particular,

the L3 table’s forwarding decision must always be preferred in the LAG table.

Finally, suppose the engineers want to migrate their original pipeline to a one

big table abstraction (like OBT in Figure 6.2), similar to OpenFlow. Now, the

engineers need to make code changes to all three translations (Figure 6.4).

Of course, the ONOS engineers could compose the translations from the one

big table to the first pipeline, and on to the other pipelines. However as more

and more logical and physical tables are added, managing a complex cascade of

translations would become unwieldy, and hard to maintain.

Control Plane Synthesis with Avenir. Avenir improves upon the state of the

art—i.e., writing manual translations—by automating the translation of rules from

an abstract pipeline to a target pipeline. Of course, the programmer still needs

to write programs that capture the behavior of both pipelines, and that’s a non-

trivial task. But we believe this should be less challenging than actually writing

the translations—akin to describing source and target languages vs. writing a

compiler.

To see how this is done, let’s explore how Avenir translates abstract Pipe1 L2

insertions into Pipe2 insertions. First, assume, as shown on the left of Figure 6.5,

that the L3 table is populated with rules that match on the IPv4 address (10.0.0.1)

and set the metadata to (8), and the LAG table matches on that metadata and
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Pipe1

L2 fwd
eth.dst Action

ABB28FC set out(5)

L3 fwd
ipv4.dst Action
10.0.0.1 set out(8)

Pipe2

with holes

L2 fwd
eth.dst Action

?1 ?2

L3 fwd
ipv4.dst Action
10.0.0.1 set meta(8)

?5 ?6

LAG
meta Action

8 set out(8)
?3 ?4

Figure 6.5: Dynamic Configurations used in example scenario. Pipe2 is annotated
with “holes” to be filled in. During synthesis, Avenir solves for these unknowns
and concludes that ?1 = ABB28FC, ?2 = set meta(5), ?3 = 5, ?4 = set out(5).

forwards out port 8. Consider inserting a single rule into the abstract Pipeline 1

L2 table that matches on eth.dst = ABB28FC and sets the outport to 5. To reflect

this update in Pipeline 2, we then need to solve for the unknowns, written as (?) in

Pipe2 of Figure 6.5. These unknowns model the answers to questions like “Which

tables need modification?” and “What should the matches/actions/action data

be?”

More formally, the unknowns (?) represent a special kind of variable we in-

strument our program with, called a hole. Programs instrumented with holes

are called sketches. We heuristically search for a valuation of these holes that

makes the behaviors of the two pipelines equivalent. In this example, we could

set ?1 = ABB28FC, ?2 = set meta(5), ?3 = 5, and ?4 = set out(5). Since we do

not need to insert a rule in the L3 table, we do not need to find values for these

holes. In practice, holes can only be assigned values, not code snippets, like we

are doing here for ?2 and ?4. We will see how to construct these sketches in detail

in Section 6.2.2, and we will introduce our synthesis algorithm in Sections 6.2.3,

6.3.1 and 6.4.2.
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As a strawman, we might consider an offline approach, where we synthesize the

driver code once-and-for-all that translates any abstract operation into equivalent

target operations. However, there are many cases (e.g., Figure 6.4) where there

is no translation that works for all abstract operations, this synthesis algorithm

would fail to produce any solution in many cases where Avenir would succeed.

Avenir’s online solution allows for a more dynamic and flexible approach.

Incrementality and Optimizations. The key challenge in making Avenir

practical is scaling up to handle real-world programs, which typically have at least

dozens of tables with thousands of rules. Avenir needs to potentially compute a

translation on every abstract control plane operation, so it must be responsive. As

another strawman, imagine an approach that computes a full set of table rules on

every control plane operation. This strategy might be workable when the tables

have only a few rules, e.g., recomputing the existing match in Pipeline 2’s L3 table,

but it would quickly become a bottleneck if there were say, tens of thousands of

rules in L3. Hence, we employ an incremental approach in which we synthesize

“deltas” consisting of small batches of control plane operations rather than full

tables. By only considering the most recent insertion or deletion into a table, we

can often reuse previous solutions and avoid redundant recomputation.

Going a step further, we can cache “templates” derived from previous solutions

to help translate future operations. For example, on the next insertion into L2,

we can try to reuse the same stucture by inserting into L2 fwd and LAG, with

actions set meta and set out, forcing the argument to set meta to equal the LAG

table match.
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6.2 Control Plane Synthesis

Our synthesis algorithm is based on CEGIS [104]. The core of CEGIS is a loop with

two main components: verification and inductive synthesis. In each iteration of

the loop, a candidate implementation is run through the verification component to

check correctness. If verification fails, a counterexample trace is produced, allowing

the inductive synthesis component to learn from this failure to generate a better

candidate. The loop terminates when verification ultimately succeeds.

In our setting, the CEGIS loop is run for each insertion into the abstract

pipeline. Inductive synthesis produces candidate control plane implementations

for the target pipeline, and verification checks whether the behavior of the two

pipelines are equivalent. The rest of this section discusses the CEGIS components

in detail. Section 6.3 discusses optimizations that make this approach efficient and

scalable.

6.2.1 Basic Definitions and Verification

The verification component of the CEGIS loop determines whether the synthesized

control plane operations implement the same packet-processing behavior on the

target pipeline as on the abstract pipeline. We model packets as finite maps from

a fixed set of header and metadata fields to bit vectors, and say two packets are

equal and write pkt = pkt ′ if they agree on all header fields. Packets have a direct

interpretation as a boolean formula: for headers Hdr and a list x ⊆ Hdr, we write

pkt [x] to mean
∧
x∈x x = pkt .x.
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c ::= (c ∈ GPL)
| f := e Assignment(*)
| c; c Sequence(*)

| if b→ c fi Guarded Commands(*)
| apply t Table Application

a ::= (a ∈ Act)
| λ (x). c(∗) Function

t ::=


name : Func;
keys : Func+;
actions : Act+;
default : Act

 Table Definition

δ, ε ::= (δ ∈ Edit)
| Ax(ρ) Insertion
| Dx(n) Deletion

ρ ∈ Row = List[2∗]× List[2∗]× N
τ, σ ∈ Inst = Func Z⇒ List[Row]

v ::= [n]n Bitvector (v ∈ 2∗)

h ::=

{
name : Func;
width : N

}
Header Field (h ∈ Hdr)

m ::=

{
name : Func;
width : N

}
Metadata Field (h ∈ Meta)

f ∈ Hdr ∪Meta

x ∈ Func

n ∈ N

Figure 6.6: Pipeline syntax. Actions vary under starred variants

Syntax and Semantics. In Figure 6.6, we define the syntax of pipelines, No-

tice that we have departing from our very abstract GPL formalism from earlier

chapters, to one that adds more of the P4-style surface syntax. We have also done

away with nondeterministic choice, opting instead for concrete conditionals. For

Avenir, a pipeline program is a just a command c ∈ GPL, that denotes a packet

processing function, which we write JcK : Packet→ Packet.

There are a few ways to compositionally build a pipeline program. First, fields
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f ∈ Var can be assigned values via the command f := e, which updates the packet

pkt to pkt{f 7→ n}, where e evaluates to n in pkt . Further, commands can be

sequenced, c1; c2, which first executes c1 then c2. We can also use conditional

control flow, written if b1 → c1 . . . bn → cn fi, which executes command ci on

the incoming packet pkt for the smallest-indexed bi that evaluates to true on pkt .

These conditionals are similar to Dijkstra-style guarded commands [32].

Finally, table application apply(t) executes match-action table t. Tables are

represented as records, where t.name is table’s name; t.keys is a list of packet

headers referred to by name; t.actions is the list of actions (which are lexically-

scoped anonymous functions λ(x).c); and t.default is the command that is executed

when the table is missed. Only certain commands c may occur inside an action

(denoted with a (∗) in Figure 6.6)—e.g., table application is not allowed.

Our configurations are constrained to have a specific data structure, rather

than arbitrary formulae. This will enable us to carefully structure our synthesis

algorithm in the subsequent sections. To represent entries in a table t, we maintain

a table instantiation τ : Func→ List[Row], alongside the syntactic pipeline, which

maps table names to their row lists. We write Inst for the set of all instantiations.

We refer to the pair (c, τ) as the pipeline state. A row ρ ∈ Row is a triple ρ =

(m, d, a), where m are matches, a is the action index and d is the action data.

We can define a source-to-source syntactic transformation c[τ ] that replaces

every occurence of apply(t) in c with a guarded command encoding the rows of the
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table ρ = τ(t.name), as follows, where the ith row ρi = (mi, di, ai):

if



t.keys = m0 → t.action[a0](d0)

· · ·

t.keys = mn → t.action[an](dn)

true → t.default


fi

We say that a row (m, d, a) is well-defined for a table t when |m| = |t.keys|,

a < |t.actions|, and for the parameters x of t.actions[a], |d| = |x|. Further, an

instance is well-defined when all of its rows are well-defined for their tables, and

a command is well-defined when no two tables have the same name. We assume

that commands and instantiations are well-defined, and that there are no bit-width

mismatches: both are easy to check statically.

Finally, we have control plane edits (δ ∈ Edit), which are operations that allow

the control plane to modify table instantiations. We interpret them as functions,

writing δ(τ) ∈ Inst. There are two kinds of edits: insertions and deletions. For

a given instance τ , an insertion Ax(ρ)(τ) appends ρ to the end of τ(x) (meaning

it has the lowest priority). If τ(x) has a row ρ′ with the same matches as ρ, the

inserted row is dropped. A deletion Dx(i)(τ) removes the ith element from τ(x).

Now that we know how to interpret configured pipelines as functions, we say

c1 = c2 when they are functionally equivalent , concretely ∀pkt . Jc1K pkt = Jc2K pkt .

To check this condition, we use predicate transformer semantics to generate a

verification condition [47], written c1 ≡ c2, which we check using an SMT solver,

by running CheckSat(c1 6≡ c2). If the solver returns UNSAT, we conclude the

programs are equivalent. Otherwise, it returns SAT as well as a model that encodes

a counterexample χ—i.e., an input and output packet pair χ that demonstrates

different behavior in the abstract and physical programs, writing χ0 and χ1 for the
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Hole Description

?Delt,i = 1 Delete row i in table t
?Addt,j = 1 Add j rows to table t
?Actt,j = i New Row j in table t (if added), has action i
?kt,j = v New Row j in table t (if added), matches header k with v
?dt,j,i = v New Row j in table t (if added with action i)

has action data for parameter d set to v

Figure 6.7: Summary of holes used in sketching.

input and output packets respectively. It is easy to prove that this validity check

implies functional equivalence.

Theorem 6.2.1. For every pair of pipelines c1, c2, if c1 = c2 then CheckSat(c1 6≡

c2) = UNSAT, and if c1 6= c2 then CheckSat(c1 6≡ c2) = Sat χ.

Proof. By soundness of verification conditions with respect to the denotational

semantics of guarded commands [32, 47].

6.2.2 Synthesizing Candidates via Sketches

To propose new candidate programs for verification, we use a technique called

Sketching [105]. A sketch is a command containing special variables called holes.

Aside from holes for values (i.e., ?k for match keys and ?d for action data), which

we introduced in Section 6.1, we also need holes for table entries, corresponding to

deletions (?Del), insertions (?Add) and action choice (?Act). The meaning of these

holes is described in Figure 6.7.

To compute a candidate solution in our CEGIS loop, we first instrument the

program with holes. We write instr(c, τ, δ, n) to describe the program δ(τ(c)) with

deletion holes for every row in τ , and holes for n row insertions. We do not add
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deletion holes for insertions in
−→
δ , which is crucial for the completeness theorem

(Section 6.3). We lift this function from tables to programs in the obvious way.

Consider the L2 table from pipelines 1 and 2. To instrument it with holes,

allowing for a single insertion, we would insert a deletion hole for the existing rule

and a single row of insertion holes, yielding the following sketch:

Match(eth.dst) Action

?Del = 0 ABB28FC set out(5)

?Add = 1 ?eth.dst if ?Act = 0→ set out(?p)

?Act = 1→ drop()

fi

A possible model for these holes that matches the destination MAC address with

00 : 00 : 00 : 00 : 00 and drops the packet, is {?Del 7→ 0, ?eth.dst 7→ 0, ?Act 7→ 1}.

Note that ?p is irrelevant, so we omit it from the model.

Of course, sketches represent a vast search space of edits: every existing table

row can be deleted, and up to n rows can be inserted. Blindly searching through

this space would not scale in practice. Instead, we learn from counterexamples to

help guide the search toward a solution.

6.2.3 Counterexample-Guided Search

When the solver determines that a proposed candidate pipeline is not equivalent

to the abstract pipeline, it generates a counterexample χ that encodes an input-

output packet pair. This pair corresponds to a behavior of the abstract switch that

is not replicated in the candidate or vice versa. We can use this counterexample to
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fix cex(p, σ, χ, n, x) , χ0[x]⇒ wp (instr(p, σ, ·, n), χ1[x])

model(p, σ,X) , CheckSat
(
∀x.
∧
χ∈X fix cex(p, σ, χ, |X|, x)

)
Figure 6.8: The model function. In the above, the vector x is all of the non-hole
variables that occur in the formula.

cegis(l, p, τ, σ, δ,X) ,
match CheckSat(l[τ ] 6≡ p[δ(σ)]) with
| UNSAT → Ok δ
| SAT →

match model(p, δ(σ), {χ} ∪X) with
| UNSAT → Fail
| SAT δ′ → cegis(l, p, τ, σ, δ′, {χ} ∪X)

Figure 6.9: Simple Algorithm for Control Plane Synthesis.

guide our search. More formally, we use the weakest precondition wp(c, ϕ) whose

satisfying models are inputs that, after executing c, yield outputs satisfying ϕ.

The fix cex function constructs the formula χ0[x]⇒ wp(s, χ1[x]) for the sketch

s = instr(p, σ, ·, |X|). The formula identifies edits that when applied to the phys-

ical pipeline state (p, σ) produce the input-output behavior indicated by χ.

The function model in Figure 6.8 lifts fix cex over all counterexamples X that

have been seen so far. Notice that we only instrument the physical pipeline with

|X| insertion holes since each counterexample hits at most one rule in each table.

6.2.4 Synthesis Algorithm

The full synthesis algorithm is presented in Figure 6.9. Given a abstract pipeline l,

a target pipeline p, an abstract table instantiation τ , a target table instantiation σ,

a sequence of physical edits δ, and a set of counterexamples X, cegis(l, p, τ, σ, δ,X)
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L2 fwd =

Match(eth.dst) Action

?Del0 = 0 ABB28FC set out(5)
?Add0 = 1 ?eth.dst0 if ?Act0 = 0→ set out(?p0)

?Act0 = 1→ drop()
fi

?Add1 = 1 ?eth.dst1 if ?Act1 = 0→ set out(?p1)
?Act1 = 1→ drop()

fi

L3 fwd =

Match(ip.dst) Action

?Del2 = 0 10.0.0.1 set out(8)
?Del1 = 0 8.8.8.8 set out(47)

?Add3 = 1 ?ipv4.dst3 if ?Act2 = 0→ set out(?p2)
?Act2 = 1→ drop()

fi
?Add3 = 1 ?ipv4.dst3 if ?Act3 = 0→ set out(?p4)

?Act3 = 1→ drop()
fi

Figure 6.10: Basic Sketch for Pipe1: Satisfiable for packets that hit L2’s first row
and L3’s second.

L2 fwd =

Match(eth.dst) Action

?Del0 = 0 ABB28FC set out(5)
?Add0 = 1 ?eth.dst0 if ?Act0 = 0→ set out(?p0)

?Act0 = 1→ drop()
fi

L3 fwd =

Match(ip.dst) Action

?Del2 = 0 10.0.0.1 set out(8)
8.8.8.8 set out(47)

?Add1 = 1 ?ipv4.dst1 if ?Act1 = 0→ set out(?p1)
?Act1 = 1→ drop()

fi

Figure 6.11: Incremental Sketch for Pipe1: Unsatisfiable for packets that hit L2’s
first row and L3’s second, which triggers backtracking, remembering that the
previously-synthesized edit was incorrect.
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produces a sequence of edits ε such that l[τ ] = p[ε(σ)] if one exists. We initially

call the algorithm with δ = [ ] and X = {}. First, we call the SMT solver to check

for equality. If the programs are equal, we are done, and return δ. Otherwise, we

get a counterexample χ and solve for new edits by augmenting X with χ, applying

the edits to the target pipeline and calling model. If it returns UNSAT, there is

no way to make the programs equivalent and we fail. Otherwise, we get a new

sequence of edits and keep searching.

6.2.5 Formal Properties

Next we establish two formal properties for our synthesis algorithm: soundness

and completeness. Soundness means that synthesized target operations produce

equivalent behavior.

Theorem 6.2.2 (Soundness). For every l, p ∈ GPL, τ, σ ∈ Inst, δ ∈ List[Edit],

and X ⊆ Jl[τ ]K ∩
q
p[δ(σ)]

y
if cegis(l, p, τ, σ, δ,X) = Ok ε then l[τ ] = p[ε(σ)].

Proof. Follows from Theorem 6.2.1.

Completeness says that if a solution exists, then our synthesis algorithm will

(eventually) find it.

Theorem 6.2.3 (Completeness). For every l, p ∈ GPL, τ, σ ∈ Inst, δ ∈ List[Edit],

and X ⊆ Jl[τ ]K ∩
q
p[δ(σ)]

y
, if ∃δ′ ∈ List[Edit]. l[τ ] = p[δ′(σ)] then ∃δ′′ ∈

List[Edit]. cegis(l, p, τ, σ, δ,X) = Ok δ′′ and l[τ ] = p[δ′′(σ)].

Proof. By induction on the size of Packet \ π1(X).
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Limitations The main limitation of this first synthesis algorithm is that the

number of queries is bounded by the number of counterexamples—i.e., every pos-

sible packet. Given an MTU of n, there could be as many as 2n packets.

6.3 A Scalable Solution: Incremental Synthesis

To obtain a scalable synthesis algorithm, we first exploit the insight that the con-

trol plane operates in an incremental fashion—i.e., before each control plane opera-

tion, the data planes are already equivalent, so we only need to handle incremental

changes to the abstract program, such as adding or deleting a rule. In the common

case, we do not have to resynthesize all of the previously generated rules. How-

ever, some care is needed as certain control plane operations do require deleting

previously installed rules.

6.3.1 Single Counterexample-Guided Search

Our first enhancement to the basic synthesis algorithm is to only add insertion

holes to solve for the most recent counterexample, and only add deletion holes

for state that existed before synthesis began, which greatly reduces the number of

holes we need to produce as we explore the space. Instead of instrumenting the

program with insertion holes for every counterexample, we only do it for the most

recent one.

Consider again the L2 and L3 tables from Pipe1 with the initial state depicted

in Figure 6.5. We want to synthesize edits that send Ethernet packets that miss in

the L2 fwd with destination DECAFBAD out on port 47. Suppose the first coun-
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terexample has input packet χ0 = {eth.dst 7→ DECAFBAD, ipv4.dst 7→ 8.8.8.8},

and output packet χ1 = χ0{out 7→ 47}. Let’s say on the first iteration we produce

the (incorrect) edit to L2 fwd that maps ipv4.dst = 8.8.8.8 to set out(47), and the

verification step will provide a new counterexample.

Suppose the next counterexample has input packet χ′0 = {eth.dst 7→

ABB28FC, ipv4.dst 7→ 8.8.8.8}, and output packet χ′1 = χ′0{out 7→ 5}. Now the

simple algorithm will produce the sketch in Figure 6.10, which can be solved by

deleting the already inserted row (?Del1 = 1) and adding the single required row

to the L2 table (?Add0 = 1, ?eth.dst0 = DECAFBAD, ?Act0 = 0, ?p0 = 47, and

remaining Add/Del holes disabled).

In contrast, the incremental search will first create the unsatisfiable sketch

shown in Figure 6.11. There is no way to fill its holes to satisfy the above coun-

terexample. We backtrack with the knowledge that ?ipv4.dst 6= 8.8.8.8 and attempt

to solve the original sketch with respect to the original counterexample, and the

only remaining solution is correct.

First, notice that the final simple sketch uses 21 holes, whereas each incremental

sketch uses only 10. On the other hand, the incremental search sends 3 sketches to

the solver as opposed to the simple search, which only sends 2. Why do we want

to send more queries to Z3 instead of less? This is a result of the NP-completeness

of SAT/SMT solving. Solving more formulae with fewer variables is often faster

than solving fewer formulae with more variables. Here, the search space size for

the 3 incremental sketches is approximately 3 · |B|10, whereas for “simple” query

it is approximately |B|21, where |B| is the size of the bitvector domain.

Further, observe that the incremental sketches we send will always have 10
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fix cex(p, σ, δ, x, χ) , pkt [x]⇒ wp(instr(p, σ, δ, 1), pkt ′[x])

model′(p, σ, δ, χ, ϕ) , SAT

(
∀x.fix cex(p, σ, δ, x, χ))
∧ ϕ ∧ HEURISTIC()

)

Figure 6.12: The model′ function computes edits to physical state (p, σ) to acco-
modate the counterexample χ. The oracle soundly restricts the search space.

cegis(l, p, τ, δ, σ) , verify(l, p, δ(τ), σ, [ ])

verify(l, p, τ, σ, δ) ,
match CheckSat(l[τ ] 6≡ p[δ(σ)]) with
| UNSAT→ Ok δ
| SAT χ→ solve(l, p, τ, σ, δ, χ, true)

solve(l, p, τ, σ, δ, χ, ϕ) ,
match model′(p, σ, δ, χ, ϕ) with
| UNSAT→ Fail
| SAT δ′ →

match verify(l, p, τ, σ, δ ◦ δ′) with
| Ok δ′′ → Ok δ′′

| Fail→ solve(l, p, τ, σ, δ, χ, ϕ ∧ ¬δ′)

Figure 6.13: The incremental backtracking CEGIS algorithm.

holes, independent of the number of counterexamples, whereas the simple sketch

will continue to add holes as the number of counterexamples grows.

We formalize this new incremental model-finding function model′ in Figure 6.12.

It is defined in term of a satisfiability check for a conjunction of three sub-formulas.

The first conjunct uses a modified fix cex function that instruments the program

with one addition hole per table. The second conjunct, ϕ, limits the search

by preventing models from reoccurring. The final conjunct is a search oracle

HEURISTIC() that computes restrictions on the search space. The only constraints

on HEURISTIC() are that it must not add covered rules or previously-deleted rules

(to avoid looping), and it must not permanently preclude any solution (to ensure

completeness).
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6.3.2 Incremental Synthesis Algorithm

We present our incremental synthesis algorithm in Figure 6.13. It comprises two

mutually recursive functions: verify, which checks the verification condition and

solve, which generates new models. Both functions take the same arguments: the

abstract and target programs and instantiations ((l, τ) and (p, σ) respectively),

and a sequence of edits to the target program δ. They either return Ok δ
′
, where

δ is the prefix of δ
′

and CheckSat(l[τ ] 6≡ p[δ
′
(σ)]) = UNSAT, or Fail, if there is

no such δ
′
. The cegis function is the “main” method. It takes the abstract and

target pipelines (l and p) and instantiations (τ and σ) as arguments, as well as the

abstract edit δ. It then applies δ to τ and invokes verify with no target edits.

The verify function resembles the cegis function of Section 6.2. It first checks

whether the programs are equal, and if so returns Ok δ. Otherwise it calls solve

with an initial counterexample χ and an unrestricted model, which searches for an

edit to make the programs equivalent.

The solve function takes the standard arguments, with the addition of a coun-

terexample χ and the model space restriction formula ϕ, which keeps track of

failed solutions for χ, to prevent repetition. First, model′ searches for a target edit

that corrects the behavior for the counterexample. If none exists, we return Fail,

indicating that there is no sequence of equivalent target edits with the prefix δ.

Otherwise, model′ provides a model δ′. In this case we extend the running sequence

of edits to δ◦δ′ and call back to verify. If successful, we return the result, otherwise

we preclude δ′ from the space of possible models ϕ (writing ¬δ′ for the negation of

valuations that produce δ′.) Then we recursively call solve and continue searching

within this restricted space of models.
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6.3.3 Formal Properties

We prove that the incremental algorithm is also sound and complete. As with

the simpler algorithm, the proof of soundness follows by the correctness of the

verification condition.

Theorem 6.3.1 (Incremental Soundness). For every l, p ∈ GPL, τ, σ ∈ Inst,

δ ∈ Edit, X ⊆ Jl[τ ]K∩
q
p[δ(σ)]

y
, if cegis(l, p, τ, σ, δ,X) = Ok ε, then l[τ ] = p[ε(σ)].

Proof. Again, the result follows from Theorem 6.2.1.

As in the simple synthesis algorithm, incremental completness relies on the

finite domain, which here is the product of two finite domains: (1) sequences of

reachable edits that do not redundantly add and delete a rule, and (2) the number

of valuations for the holes introduced by the instr function.

Theorem 6.3.2 (Incremental Completeness). For every abstract program l, target

program p, abstract instantiation τ , target instantiation σ and abstract edit δ if

∃ε ∈ List[Edit]. l[δ(τ)] = p[ε(σ)] then ∃δ′ ∈ List[Edit]. cegis(l, p, τ, δ, σ, [ ]) = Ok δ′

and l[δ(τ)] = p[δ′(σ)].

Proof. By strong outer induction on the size of the reachable non-deleting edit

sequences, and strong inner induction on the (lexicographically ordered) size of

the counterexample set and the number of models in each model space.

Theorem 6.3.2 proves that Avenir translates abstract operations given un-

bounded resources. In practice, Avenir’s effectiveness relies on heuristics and op-

timizations.
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6.4 Heuristics and Optimizations

Avenir offers a number of heuristic optimizations designed to help it scale to larger

networks. Interestingly, these optimizations need not be sound. We introduce a

run-time check for soundness and revert the optimization if it fails. We focus on

two classes of optimizations: verification and model finding.

6.4.1 Exploiting Incrementality

The key to scalable synthesis is to adopt an incremental approach and focus on ed-

its, while incorporating further optimizations within the verification and synthesis

steps.

Fast Counterexamples. In the incremental setting, we know that a new ab-

stract insertion δ must be the cause of any semantic difference with the target

pipeline. We symbolically compute packets that hit δ via an SMT query that

gives us a potential counterexample packet pkt . We use the denotational seman-

tics to check whether pkt is a real counterexample. If pkt doesn’t induce different

behavior we retry the query (in practice 10 times) until we either obtain a true

counterexample, or resort back to the standard equivalence check.

Program Slicing. We leverage the incrementality assumption to use program

slicing to verify only the part of the program that changes. This isn’t always

sound, so we check that the abstract edits are reachable iff the target edits are.

We also have a faster and stronger constraint that checks that the abstract and

target matches are disjoint from the extant rules. If both conditions fail, we run
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the full equivalence check. In practice, slicing composes with constant propagation

and dead code elimination to normalize the queries.

Query Templates. The queries produced using program slicing are often syn-

tactically similar. So when we see two validity queries that only differ in their

specific concrete values, we try to abstract those concrete values into a universally

quantified variable. We then check whether that more-general query is valid. If it

is, we add it to a cache of templates, otherwise we continue in a CEGIS loop by

negating the valuation of the quantified variables and trying again. Whenever we

get future queries that are instances of the template, we can return VALID without

having to consult the SMT solver.

Translation Templates. As with queries, we can cache translations of opera-

tions by generalizing over their concrete values to obtain a template. The template

observes the way that concrete values are mapped from previously-seen abstract

insertions into their equivalent target insertions, and structurally replicates that

mapping on the new abstract insertion. It also observes the cache of translations for

differing constants and generates unused constants for new rules which optimizes

for metadata patterns like in Pipe2 and Pipe3 from Figure 6.2. Note that before

adding a solution to the cache, Avenir optionally reduces its size, by heuristically

removing superfluous target edits, which improves the generality of the solution.

When no template applies, Avenir relies on a heuristic-guided search.
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6.4.2 Model-Finding Heuristics

Now we describe the implementation of the HEURISTIC() oracle, which abstracts

a combination of heuristics. In our formalization, we assume that the heuristics

are always complete. However in practice, many of Avenir’s individual heuristics

are not; when a given combination fails, we disable some and try again with a

different combination. This search through the heuristics is currently hard-coded,

but we plan to support user control of the search strategy and custom heuristics.

We describe the heuristics useful in our experiments here.

Ternary and Optional Matching. In the previous sections, we only inserted

holes to generate exact matches. We can generate ternary matches for a match

key k, which allows us to represent, say, a wild-carded IPv4 source address in only

a single row (rather than 232 exact-match rows). To do this, we generate a pair of

holes ?k and ?kmask and encode the match as k&?kmask = ?k. To eliminate duplicate

keys we also enforce the constraint ?k&?kmask = ?k. For optional matches, we

restrict the masks to be all 1s or all 0s.

Exact and Mask Hints. When a row is inserted into the abstract pipeline, the

non-wildcarded keys K of that row are likely relevant in classifying packets. So,

we force the relevance of matches on fields in K, either by copying the abstract

match values into the target edits (which is very optimistic), or by forcing their

masks (if masking is enabled) to be all 1s.

Action Hints. Given a counterexample (pkt0, pkt1), we can observe the variables

that change in the abstract program, i.e., ∆ = {x | pkt0.x 6= pkt1.x}, and ensure
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that all edits have actions that can influence the value of some variable in ∆.

Other Optimizations. Our final collection of optimizations are based on intu-

itive heuristics that arise often in practice.

• Reachable Adds. We force synthesized models to be reachable using the

counterexample driving the search.

• Prefer Adds. We try to find a solution that does not require deleting

existing rules.

• Prefer Non Zero Models. We enforce ?k 6= 0 6= ?d for all key and data

holes, unless they are wildcarded.

• Bounded Edits. We restrict the search space so that backtracking is trig-

gered beyond specified limits.

• Previous Counterexamples. We try to synthesize rules that do not violate

previously-seen counterexamples.

6.5 Implementation

We implemented Avenir in approximately 11K lines [101] of OCaml code that in-

terfaces with Z3 [31]. Our implementation accepts a description of an abstract and

a target pipeline, sequences of insertions to both programs (to construct the initial

state), as well as a sequence of abstract edits to synthesize. Avenir then produces

a sequence of edits to the target program (or fails if no such sequence exists). All

of the optimizations described in 6.4 are configurable as command line flags. In
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our implemention, we use an efficient encoding of the weakest precondition [47],

which has linear size for the programs in our internal syntax.

P4 Program Encoding. The front-end of our implementation supports a large

subset of P4, via an encoding from P4’s control blocks into Avenir’s internal syn-

tax. This translation resembles previous work on verifying P4 programs [72]. Of

course, P4 is a larger language than Avenir’s syntax. We support more complex

P4 language constructs by desugaring them into sequences of internal commands.

We currently assume that all of the data plane programs use the same parser

and headers. Hence, in cases where a mapping only exists due to invariants enforced

by the parser—e.g., that a packet cannot simultaneously have IPv4 and IPv6

headers—these assumptions must be manually encoded as annotations. We also

ignore match kinds and assume all matches are either exact, ternary or optional,

depending on command line flags. Finally, we manually encode certain device-

specific behaviors such as the initial value fields and the drop port value. Our

implementation is on GitHub2 under an open-source license.

6.6 Evaluation

To evaluate Avenir, we demonstrate its functionality under a variety of synthetic

and realistic scenarios, and measured its performance against hand-written base-

lines. First, we show how Avenir can automatically retarget a given abstract

pipeline to multiple target pipelines (Section 6.6.1). Second, we pass packets

through the Bmv2 software switch using the generated rules, which both shows

2Available at https://github.com/cornell-netlab/avenir
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Figure 6.14: Retargeting case study: solid lines show cold-start completion %;
dotted lines show hot-start completion %.
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Figure 6.15: Proportion of all pairs of 64 hosts connected in a star topology that
have completed a successful IPv4 ping.

they are correct and quantifies Avenir’s performance when installing rules for mul-

tiple hosts (Section 6.6.2). Third, we present a case study consisting of a realistic

workload drawn from the Trellis data center fabric, running on top of the ONOS

SDN controller [17] (Section 6.6.3). Finally, we study Avenir’s scalability via a suite

of microbenchmarks (Section 6.6.4). Our evaluation pays particular attention to

the caches, as these are particularly important to obtain good performance.

Summary of Results. Overall, our evaluation shows that, in a variety of cases,

Avenir can translate large numbers of rules efficiently. The retargeting, emulation,

and ONOS experiments show that Avenir is effective at mapping to and from a

variety of programs, and demonstrate that the caching optimizations are highly
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Figure 6.16: Completion graph for mapping 40k fabric.p4 IPv6 route insertions
onto bcm.p4; ONOS takes around 15 min.

effective at reducing overheads.

6.6.1 Retargeting Study

Avenir allows operators to expose a single pipeline abstraction to the control plane,

while implementing the forwarding logic over a myriad of physical devices. We

demonstrate this use case via a retargeting study, where we retarget an initial

program onto a variety of different target pipelines.

The logical program logical.p4 is a simple L2-L3 pipeline followed by a PUNT

table that performs packet validation on all headers and metadata. We describe 5

additional target pipelines in terms of the changes to logical.p4:

(early validate.p4) Replaces the PUNT table of logical.p4 with an ACL that can

only match on addresses. Adds a validation table prior to the L2 table that

matches on the validity of IPv4 and the TTL field and conditionally applies

the rest of the pipeline.

(action decomp.p4) Decomposes the L3 table into two tables, (1) a forward table

that matches on the IPv4 destination and sets the output port, (2) a rewrite

table that matches on the IPv4 destination and performs MAC rewriting.
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(metadata.p4) Instead of setting the output port, the L2 and L3 tables set a meta-

data field. This metadata field is mapped to the output port in the nexthop

table, which is applied between the L2 and L3 tables.

(double.p4) Applies all three tables in the pipeline twice.

(choice.p4) Introduces a staging table that sets a metadata variable to select be-

tween copies of the abstract pipeline.

We used Avenir to translate 1,001 logical.p4 insertions (1 into PUNT for TTL

checking, 500 into L2 for Ethernet destination forwarding, and 500 into L3 for

IPv4 destination forwarding and MAC rewriting). We show completion graphs for

each target in Figure 6.14.

There are a few things to notice. Every line has an “elbow” at the 50% mark on

the y-axis, after which the slope decreases. This represents the transition between

parts of the workload. The L3 insertions are slower, because the L2 table is already

populated with 500 rules, and slicing has to deal with larger tables. Further,

these rules may cause the query template cache to miss: the second “elbow” on

the metadata line indicates where the query cache’s synthesis engine was able to

successfully abstract.

To further demonstrate the power of our template caches, we compare our

“cold-start” synthesis (solid lines), where the caches are empty, with “hot-start”

synthesis (dotted lines), where the caches are fully populated. We achieve this

by running Avenir on the same data twice, without resetting the caches, and

logging performance for the second run. The massive performance increase is

seen in Figure 6.14. Network operators concerned with nondeterministic runtimes

associated with synthesis can manually populate their caches.
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6.6.2 Network Emulation

We use Avenir to program the entries of a programmable software switch (bmv2)

running in a network emulator (mininet). We configure 64 hosts in a star topology

connected to a single switch, and install rules to establish all-pairs ping connectiv-

ity. The P4 program running on the software switch is the simple router.p4 program

from the Bmv2 repository. The abstract program is a modified version that joins

together the L3 rewriting and forwarding tables into one.

We generate rules required to establish all-pairs connectivity into the logical

program and use Avenir to synthesize the equivalent edits into simple router.p4.

We then report the time of the first successful ping between each pair of hosts.

We compare Avenir cold-cache run with a manually generated sequence of rule

insertions and a pre-populated hot-cache, the results are depicted in Figure 6.15.

6.6.3 Case Study: Trellis & ONOS

Trellis[115] is a set of production-grade SDN apps running on ONOS[17] to pro-

vide control plane logic for multi-purpose L2/L3 leaf-spine fabrics of OF-DPA

Broadcom switches. Internally, Trellis uses an ONOS API called FlowObjective,

designed to allow portability of apps across different switches by abstracting com-

mon L2/L3 functionalities. Trellis controls switches by writing FlowObjectives,

which are translated by an ONOS driver into OpenFlow messages for OF-DPA

tables. Finally, OF-DPA translates OpenFlow messages to Broadcom SDK calls

to populate ASIC-specific tables.

We evaluated Avenir on real-world P4 programs that represent the outermost
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layers of the architecture described above. The fabric.p4 [42] P4 program was

created by the ONOS developers to support Trellis on programmable switches.

It is designed to simplify control plane operations, and for this reason it closely

resembles the FlowObjective API. Likewise, bcm.p4 [84] abstracts tables from the

Broadcom SDK, and was created for Stratum [109], an open source switch agent

that uses P4 to model control APIs.

We then collected 40k IPv6 route insertions into fabric.p4 corresponding to a

switch reboot load test designed by ONOS engineers. Avenir synthesized insertions

into bcm.p4 that equivalently process the IPv6 header and egress specification.

Since Avenir does not process the parser, we simulated its behavior by manually

setting the validity bit of the IPv6 header to true, and the IPv4 and MPLS headers

to false. Further, the P4 specification [28] leaves the initial values of metadata

headers undefined; we manually zero-initialize the metadata fields (a behavior

that can be specified for many P4 targets via a compile time flag).

Further, we modified the l3 fwd in bcm.p4 by swapping the IPv6 matches for

IPv4 matches; otherwise there wouldn’t have been a valid translation. Finally since

Avenir works with parsed headers, we systematically renamed headers in bcm.p4

to match fabric.p4.

The results are shown in Figure 6.16. According to its engineers, ONOS com-

putes and installs these 40k IPv6 routes over a period of about 15 minutes. This

figure includes Trellis’ route computation logic, the translation itself and the in-

stallation of rules onto the physical target devices. Figure 6.16 shows that Avenir

translates these 40k routes into bcm.p4 pipeline in just under 12 minutes. However,

it is unclear what conclusions to draw about overhead, because we don’t know how
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ONOS’ translation logic performs. In the (unlikely) best case, we would have no

overhead. In the (also unlikely) worst case, we would nearly double the runtime.

The real performance would likely be somewhere between these extremes.

6.6.4 Microbenchmarks

To assess Avenir’s scalability, we procedurally generated a collection of microbench-

marks that explore two independent variables, the number of 32-bit input variables

I and the number of 32-bit output variables O. For simplicity, the input and output

variables sets are distinct.

The abstract pipeline has one table that matches on all of the input variables,
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and assigns one of the output variables. The target pipeline first matches on all

output variables and assigns a metadata value m. This initial staging table is

followed by a sequence of O output tables. Table i in this sequence matches solely

on m and optionally assigns an output variable.

The results are shown in Figure 6.17. The x-axis shows the number of bits in

the abstract program (i.e., 32(I + O)) and the y axis shows the time in seconds

to translate 100 random abstract edits. The violins show the timing distribution

marked with median value. The variation comes from the random generation and

from the variation in I and O.

Since networking programs are usually classifier-heavy, we also fixed the number

of 32-bit output variables to 8, and varied the size of the classifier. The results are

in Figure 6.18.

Of course, it’s difficult to make general claims about the scalability of Avenir’s

approach, which incorporates numerous heuristics. Nevertheless, it does seem that

the complexity increases exponentially with the number of bits, as is expected for a

tool that relies on a black-box solver. Target pipelines with different structure than

the regular, repeated structure in our microbenchmarks may behave differently.

6.7 Limitations and Future Work

We discuss two limitations to Avenir’s methodology: the cost of formally specificy-

ing the abstract and target pipelines, and the run-time overheads of our heuristic

search.

The biggest threat to Avenir’s use is the requirement that pipelines be formally
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specified. The work required to develop a formal specification can be significant,

and there is no guarantee that a given specification of a pipeline will accurately

describe its run-time behavior. Of course, these concerns can be side-stepped if

the pipelines are already programmed in P4. But more generally we would need

tools for generating specifications and testing conformance. We plan to explore

such tools in future work.

Another limitation is our use of heuristic search. The evaluation shows many

situations in which Avenir works efficiently, but there are also situations in which

it fails to terminate in a reasonable time. For example, to translate from Pipe1 to

OBT in Figure 6.2, Avenir maintains a cross product of L2 fwd and L3 fwd, which

requires quadratic operations, and causes incremental heursitics to fail. Expanding

the effective scope of Avenir’s search is future work. We also plan to explore

optimal notions of synthesis—e.g., finding the smallest solution.

6.8 Conclusion

This chapter presented Avenir, a tool that automatically synthesizes control plane

operations to ensure uniform behavior across a variety of physical data planes.

Avenir uses a counterexample guided inductive synthesis algorithm based on a

novel application of sketches to data plane programs. Our evaluation demonstrates

that Avenir correctly synthesizes control plane operations with modest overheads.

However, Avenir’s termination guarantees are potentially weaker than we would

like for a real deployment. The completeness results say that whenever an abstract

configuration can be translated it will eventually be. However, this doesn’t give us

an abstraction guarantee. We want to know that—that every way the controller
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can configure the abstract pipeline will cause Avenir to terminate. In the final

chapter of tihs dissertation, we will discuss a framework for synchronizing pipeline

programs and proving their correctness.
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CHAPTER 7

RELATIONAL HOARE LENSES

The field of program logics was established over fifty years ago, grounded in

foundational insights such as the following:

Computer programming is an exact science in that all the properties of

a program and all the consequences of executing it in any given envi-

ronment can, in principle, be derived from the text of the program itself

by means of purely deductive reasoning.

—C. A. R. Hoare [56]

Indeed, over the years, programming languages researchers have developed a wide

variety of program logics, including probabilistic logics [95, 13], parallel and con-

current logics [91, 64], separation logics [85, 65], and even relational logics [15, 81]

that support relating the behaviors of multiple programs. However, with some

notable exceptions [34], one aspect of Hoare’s vision has been underexplored in

prior work: a means to specify and enforce assumptions about the environment in

which a program operates.

Suppose the relevant environmental information can be captured in a configu-

ration. We can then model a program as a (curried) function from configurations

S and inputs A to outputs B:1

f [·] : S → A ⇀ B

We call f an open program, and we write f [s] for the (closed) program resulting

from partially applying f to a configuration (s ∈ S). Note that although we could

1We write A ⇀ B for the set of partial functions from A to B, and f(x)↓ (resp. f(x)↑) to
mean that f is defined (resp. is undefined, or diverges), on input x.
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mathematically treat the configuration of an open program as just another part of

its input, it is convenient to distinguish between configuring the program (which is

an infrequent operation) and executing the configured program (which is a frequent

operation).

Many real-world systems can be faithfully modeled as open programs. For

instance, consider a network device such as a router, switch, or firewall. The

behavior of such a device can be represented as a program in a domain-specific

language like P4 [20]. The program specifies the packet-processing behavior of the

device, and it also supports dynamic reconfiguration—e.g., setting the next hop

toward a given destination. It follows that to fully understand the consequences of

executing a program on a given packet, we need more than just the program text.

We must also know how the program has been configured. Similar issues arise

in other settings—e.g., instruction set architectures (ISA) where the behavior of

certain instructions depends on the values in control-status registers (CSRs).

Returning to our example, it is often necessary to maintain two “views” of

a network device: an abstract view that provides a high-level configuration API

for human operators, and a concrete view that provides a lower-level configuration

API that corresponds to its implementation in hardware. Ideally, we would be able

to modify the configuration at one level, and have the changes be reflected at the

other level, ensuring consistent behavior in the configured programs at all times.

However, mapping configurations turns out to be a challenging problem because

the high-level and low-level APIs are typically not in one-to-one correspondence.

For example, it is sometimes possible to change the next hop to a destination

using a single high-level API call, but realizing the same effect at the low level

often requires multiple API calls. In Chapter 6, we described Avenir, a solution to
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the network configuration mapping problem using program synthesis. But while

Avenir’s synthesis algorithm is sound and complete—i.e., it is guaranteed to find

a correct mapping if one exists—it relies on heuristics to speed up synthesis, and

provides unreliable performance in practice.

This paper presents a different way to solve the configuration mapping prob-

lem, using a novel framework for synchronizing and verifying open programs. Our

framework, called relational Hoare lenses (RHLenses) is motivated by both theo-

retical and practical considerations. Theoretically, we aim to integrate relational

program logics, which provide tools for reasoning about multiple programs simulta-

neously, with bidirectional lenses, which provide constructs for mapping between

different data views. Practically, we seek to design natural syntax and seman-

tics for RHLenses, and build tools that can solve practical configuration mapping

problems in an elegant manner.

The design of RHLenses turns out to be more subtle than it might appear. To

illustrate, consider a pair of open programs with the same inputs and outputs but

different configurations:

f [·] : S → A ⇀ B and g[·] : T → A ⇀ B

Now suppose we wish to map between S and T so that f and g exhibit identical

behavior when instantiated with related configurations. The obvious approach

would be to define a lens ` between S and T , then use the relation induced by `

to prove that f and g equivalent in a relational logic. However, this approach has

a key limitation—it lacks modularity. Specifically, using a monolithic lens induces

a complex relation on configurations, which complicates the proof of equivalence.

Our framework, in contrast, offers compositional primitives that allow users to mix

local transformations on configurations and local relational proofs in a seamless
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manner. Our work also extends lens theory by moving beyond standard round-

tripping laws and allowing users to specify custom requirements for configurations

manipulated by lenses.

The contributions of this work are as follows:

• We introduce relational Hoare lenses (RHLenses), a framework that unifies

relational program logics and bidirectional lenses in a single semantic struc-

ture.

• We design a compositional syntax for defining RHLenses, with combinator-

based typing rules that capture essential correctness properties.

• We develop a prototype implementation of RHLenses in OCaml and Z3,

demonstrating its application to configuration mapping in network data

planes.

7.1 Overview

Dynamic reconfiguration of network devices is usually achieved by installing or

removing entries in forwarding tables. Each entry consists of a match and an action:

the match is a predicate (e.g., checking whether the input packet’s destination

address matches a given prefix) that determines whether the action should be

executed, while the action (e.g., setting the output port) is an imperative procedure

that somehow transforms the state of the program. A forwarding table is simply

a list of entries. To execute a table, the matches are evaluated in order, and the

action corresponding to the first matching entry is executed. (If no entry matches,

then executing the table is a no-op.)
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Figure 7.1: A lens synchronizing abstract and concrete views of a packet forwarding
pipeline. The relation Θ describes the relation maintained by the lens’s putR and
putL functions.

Data planes are often viewed at two levels of abstraction: a high-level abstract

view providing a stable interface to human operators and a low-level concrete

view describing the software interface2 to the bare-metal hardware. Consider the

example shown in Figure 7.1. In the abstract view, the data plane has a single

table OneTable that implements forwarding and access control. That is, it matches

on the packet’s destination address and executes one of two actions: forward n,

where n is an egress port, or drop. In the concrete view, the data plane has two

tables, Fwd and Acl (for access control list). As the names suggest, the Fwd table

implements forwarding, i.e., assigning a forwarding port, while Acl implements

access control, i.e., dropping unwanted packets. More specifically, Fwd matches

on the packet’s destination address, of type addr, and executes a single action,

emit n, while Acl matches on the same value and then executes allow or deny.

Network operators need to synchronize data between abstract and concrete

configurations [2, 17], while ensuring that the configured programs behave the

same semantics. So at a high level, we need to relate the abstract and concrete

2Sometimes called a switch SDK
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configurations as well as the programs that use those configurations.

To relate the configurations, we need to map between abstract and concrete

entries in the following way:

OneTable Fwd Acl

(dst, forward n) � (dst, emit n) (dst, allow)

(dst, drop) � (dst, emit ) (dst, deny)

Note that in mapping the abstract drop action to concrete actions, we can use any

egress port for emit, as the Acl table executes deny.

To achieve this, we can use the framework of symmetric lenses [57], which al-

low both transformations—i.e., from abstract to concrete configurations, and vice

versa—to be specified using a single program. The next section gives a detailed

introduction to symmetric lenses. For now, the important thing to understand is

that a symmetric lens ` describes a pair of functions, `.putL and `.putR, that imple-

ment the required transformations. In addition, the semantics of a symmetric lens

guarantees that after executing either `.putL or `.putR, the lens will quiesce—i.e.,

further attempts to propagate changes in either direction will be a no-op. Hence,

we can think of a symmetric lens as maintaining a relation Θ on configurations—

i.e., configurations that become synchronized by propagating changes from one

side to the other.

To relate our example data plane programs, we can use techniques from rela-

tional logic [15] to relate their behaviors. More formally, we will show that, when

instantiated with related configurations, the programs satisfy a relational specifica-

tion in which the identity relation is both the precondition and the postcondition.

That is, the configured data planes process packets in exactly the same way. In our

example, we can compute verification conditions for the programs using standard
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techniques, and then check that they are valid using an SMT solver.

In this example, we separated the tasks of writing a bidirectional lens and

reasoning about programs. However, practical examples often do not decompose so

neatly. A key challenge is to design a unified framework that allows programmers

to implement both tasks using a single abstraction. Achieving this vision in a

compositional way is one of the primary goals of this paper.

7.2 Basic Definitions for Relational Hoare Lenses

This section reviews the definition of a symmetric lens and defines what it means

for a lens to maintain a relation R, before giving a formal definition of relational

Hoare lenses.

Definition 7.2.1 ([57]). A symmetric lens ` from S to T , written ` ∈ S ↔ T ,

consists of a set `.K of complements, a distinguished element `.k0 ∈ `.K, and

functions

`.putL ∈ S × `.K → T × `.K

`.putR ∈ T × `.K → S × `.K

with the following round-trip properties:

1. If `.putL(s, k) = (t, k′), then `.putR(t, k′) = (s, k′)

2. If `.putR(t, k) = (s, k′), then `.putL(s, k′) = (t, k′)

As should be clear from this definition, the putL maps data from the source S to the

target T , while putR maps data in the other direction, from target to source. The
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complement K stores information that appears only in the source or target, but

not both. The symmetric lens laws are somewhat weaker than one might expect,

in that they do not stipulate that the information in S must somehow be reflected

in T , and vice versa. Rather, the laws only guarantee that after executing a single

putL or putR function, the data in S and T (as well as the complement) will be

synchronized, in the sense that invoking putL and putR again will not change their

values.

We will warm up with a few examples of primitive lenses and simple oper-

ations on lenses. First, every bijection induces a lens, which does not use its

complement—i.e., we may model the complement as the unit value. For example,

the identity lens is defined as followed:

idS ∈ S ↔ S

putL(s, ()), (s, ())

putR(s, ()), (s, ())

The identity lens is so called both because its putL and putR components

are both the identity function, and because it is the identity element for lens

composition. Given lenses `1 ∈ S0 ↔ S1 and `2 ∈ S1 ↔ S2 we can compose

them by taking the product of their complements, and applying their putL (resp.

putR) functions in turn: `1.putL then `2.putL (resp. `2.putR then `1.putR). More
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formally, lens composition is defined as follows:

Given :

`1 ∈ S0 ↔ S1 `2 ∈ S1 ↔ S2

Construct :

`1 ◦ `2 ∈ S0 ↔ S2

K , `1.K × `2.K

k0 , (`1.k0 , `2.k0 )

putL(s0, (k1, k2)) , let (s1, k
′
1) be `1.putL(s0, k1) in

let (s2, k
′
2) be `2.putL(s1, k2) in

(s2, (k
′
1, k
′
2))

putR(s2, (k1, k2)) , let s1, k
′
1 be `2.putR(s2, k1) in

let s0, k
′
2 be `1.putR(s0, k2) in

(s0, (k
′
1, k
′
2))

So far, we have not made essential use of the complement. As an example of

when the complement is useful, we define a bidirectional projection lens πt between

S×T and S. To enable the putR function to recover the element of T , we squirrel

it away in the complement.

Given :

t0 ∈ T

Construct :

πt0 ∈ S × T ↔ S

K , T

k0 , t0

putL((s, t), t′) , (s, t)

putR(s, t) , ((s, t), t)
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This gives some motivation for why K is called the complement : it stores the data

from each side not shared by the other.

We can also compose lenses using the tensor product operator [57]. The result-

ing lens lets us independently map between different domains. Given two lenses

`i ∈ Si ↔ Ti,for i ∈ {1, 2}, the tensor product `1⊗ `2 produces a lens from S1×S2

to T1 × T2 by effectively applying the lens components separately to the left and

right sides of the pair. The formal definition of the tensor product lens is given

below:

Given :

`i ∈ Si ↔ Ti, i = 1, 2

Construct :

`1 ⊗ `2 ∈ S1 × S2 ↔ T1 × T2

K , `1.K × `2.K

k0 , (`1.k0 , `2.k0 )

putL((s1, s2), (k1, k2)) , let ti, k
′
i be `i.putL(si, ki) in for i = 1, 2

((t1, t2), (k′1, k
′
2))

putR((t1, t2), (k1, k2)) , let si, k
′
i be `i.putR(ti, ki) in for i = 1, 2

((s1, s2), (k′1, k
′
2))

7.2.1 Specifications for lenses

As a bidirectional transformation, a lens works to maintain some relation between

elements of S and elements of T . (This idea was central to early work on bidirec-

tional transformations[78], which introduced a precursor to lenses under the name

constraint maintainers.) We formalize this idea as follows.

Definition 7.2.2. Let ` : S → T be a symmetric lens. We say that ` maintains a
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relation R ⊆ S×T , and we write ` ∈ S ↔ T : R, when there exists a set K0 ⊆ `.K

satisfying the following:

1. `.k0 ∈ K0

2. For all s ∈ S and k ∈ K0, if `.putL(s, k) = (t, k′) then (s, t) ∈ R and k′ ∈ K0

3. For all t ∈ T and k ∈ K0, if `.putR(t, k) = (s, k′) then (s, t) ∈ R and k′ ∈ K0

By standard properties of inductive definitions, there is a least such relation R,

and it is clear that if ` maintains R then it maintains any R′ ⊇ R.

The intuition behind this definition is that if ` maintains R, then R should

hold of any pair (s, t) that is properly synchronized; that is, any (s, t) such that

`.putL(s, k) = (t, k′) for some k, k′, or symmetrically with `.putR. (The round-

tripping laws ensure that the two are equivalent.) The restriction to a suitable set

K0 adds the requirement that in fact k be reachable from `.k0 by a sequence of

`.putL’s and `.putR’s, as well as making the definition invariant under symmetric

lens equivalence [57]. Specializing K0 to all of K, we arrive at the following:

Proposition 7.2.1. For a lens ` ∈ S ↔ T and elements s ∈ S, t ∈ T , and

k ∈ `.K, the following are equivalent by the lens laws:

1. `.putL(s, k) = (t, k)

2. `.putR(t, k) = (s, k)

3. There exists k′ such that `.putL(s, k′) = (t, k)

4. There exists k′ such that `.putR(t, k′) = (s, k)

Let R` be the set of all (s, t) such that the above holds for some k. Then `

maintains R`.
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The simple description of R` makes it useful in examples; in particular, we can

show that a lens maintains a relation R by showing that R` ⊆ R.

Example 7.2.3. The identity lens idS maintains the diagonal relation, that is,

RidS = IdS.

Example 7.2.4. The projection lens πt0 ∈ S × T ↔ S maintains the relation

{((s, t), s′) | s = s′}.

Example 7.2.5. Given a lens ` ∈ S ↔ T : R we can define its opposite to

be a symmetric lens (`)op ∈ T ↔ S with the same complement (`)op.K = l.K,

(`)op.k0 = `.k0 , and swapped put functions: (`)op.putL = `.putR and (`)op.putR =

`.putL. The lens (`)op maintains (R)op.

Example 7.2.6. Suppose `1 ∈ S1 ↔ T : R1 and `2 ∈ T ↔ S2 : R2. Then `1 ◦ `2

maintains the composed relation R1 ◦R2 = {(s1, s2) | (s1, t) ∈ R1, (t, s2) ∈ R2}.

Example 7.2.7. Suppose `1 ∈ S1 ↔ T1 : R1 and `2 ∈ S2 ↔ T2 : R2. Then

`1⊗`2 ∈ S1×S2 ↔ T1×T2 : R1eR2, where R1eR2 = {((s1, s2), (t1, t2)) | (si, ti) ∈

Ri, i = 1, 2}

7.2.2 Relational Hoare Lenses

Prior work on lenses has mostly relied on general “round-tripping” laws to guide

their design [48, 19, 49, 57]. However, when a lens is used with open programs,

we can give a more refined characterization of what it means for the lens to be

correct—i.e., the programs should satisfy a relational specification whenever their

configurations have been properly synchronized using the lens.

Recall the definition of an open program: a curried function f [·] : S → A ⇀ B

which yields a program f [s] of type A ⇀ B upon instantiating it with some
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configuration s ∈ S. (For concreteness, later, we will use A = B = Mem, denoting

programs as stateful, potentially-nonterminating operations Mem ⇀ Mem). We

recall the standard relational Hoare judgment, sometimes called a quadruple:

Definition 7.2.8 ([15]). Given P ⊆ A × C and Q ⊆ B × D, we say that two

programs f : A ⇀ B and g : C ⇀ D are related at P ⇒ Q, and write � f ∼ g :

P ⇒ Q, if for every (a, b) ∈ P , either both f(a) and f(b) diverge, or (f(a), g(b)) ∈

Q.

Suppose instead f [·] : S → A ⇀ B and g[·] : T → C ⇀ D are open programs.

Our goal is to synchronize f and g using a symmetric lens ` between S and T ,

while still ensuring that some relations hold on the input and output states. To

do this, we will assume that configurations s and t are produced by the lens and

check the above semantic judgment on the (now closed) programs f [s] and g[t].

We define this formally below:

Definition 7.2.9 (Relational Hoare lens). let f [·] : S → A ⇀ B and g[·] : T →

C ⇀ D be open programs, and let ` ∈ S ↔ T : R be a lens. We say ` relates f [·]

to g[·] at P ⇒ Q, and write ` ∈ f [·]� g[·] : P ⇒ Q, when the following holds

∀(s, t) ∈ R. � f [s] ∼ g[t] : P ⇒ Q

Equivalently, if f : S × A ⇀ B and g : T × C ⇀ D are the uncurried versions

of f [·] and g[·], then we can capture the above using the following definition:

` ∈ S ↔ T : R � f ∼ g : P eR⇒ Q

` ∈ f [·]� g[·] : P ⇒ Q

(7.1)

We find this package of a lens specified by a relational Hoare judgment to be a

useful abstraction for reasoning about such programs, and so we give it the name
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relational Hoare lens (RHLens). In many instances, relational Hoare lenses may

be used in place of a regular relational hoare logic judgment; we give one example

here, and delay a more thorough treatment to Section 7.3.

Example 7.2.10 (Trivial relational Hoare lens). Suppose f : A ⇀ B and g :

C ⇀ D are closed programs. We can considering as open programs with unit

configurations, that is, f [·] : Unit → A ⇀ B and g[·] : Unit → C ⇀ D, so

that they satisfy the judgment � f [·] ∼ g[·] : P ⇒ Q iff there exists an RHLens

` ∈ P � Q : P ⇒ Q.

In Equation (7.1), we have, as a precondition, a regular relational hoare logic

judgment. This may be convenient to do when we want to invoke some client

relational verifier. However we can also reason solely using lenses, as follows:

Suppose we have f [·][·] : S1 → S2 → A ⇀ B and g[·][·] : T1 → T2 → C ⇀ D, as

well as lenses `1 ∈ S1 ↔ T1 and `2 ∈ S2 ↔ T2. We now have the derived rule

`1 ∈ S1 ↔ T1 : R `2 ∈ f ][·]� g][·] : P eR⇒ Q

`1 ⊗ `2 ∈ f [·][·]� g[·][·] : Φ⇒ Ψ

where `1 ⊗ `2 is the tensor product lens from above, and h][·] : T → (S ×X)→ Y

where h[·][·] : S → T → X → Y , for h = f, g, is defined in the obvious way. In this

way, in programs with many components, they may be related by lenses one pair

at a time. In the next section, well explore a syntax for open programs f [·] and

describe a set of lens combinators that exploit the shared structure of programs to

obtain modular specifications.
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∅ |= {·}
f : Value→ Value

{F 7→ f} |= F

σ1 |= S1 σ2 |= S2

σ1 ] σ2 |= S1 · S2

σ |= S σ ∈ Θ

σ |= S where Θ

Figure 7.2: A judgment defining whether a configuration is valid w.r.t. a schema

7.3 Relational Program Logics

We base our language for open programs on the standard While language. As

While is a first-order programming language, we model configurations in terms

of uninterpreted functions. The syntax of While (Figure 7.3) is largely standard,

though we parametrize it on a set of values (Value) over which the program runs, a

set of binary operators Bin over Value, and a set of comparisons Comp over Value,

where Comp includes equality. We presume only that each operation ⊕ ∈ Bin has

a total interpretation ⊕̂ : Value→ Value→ Value and each comparison ∼∈ Comp

has a total interpretation ∼̂ : Value → Value → 2, where 2 = {tt,ff}. From

these we construct a language of expressions comprising literal values (v ∈ Value),

variables (x ∈ Var), binary operators e ⊕ e for ⊕ ∈ Bin and, most importantly,

function application F (e).

Function application is precisely where the rubber meets the road. That is,

functions define the degrees of “openness” that a program has. For a program

c, we can describe its configuration schema S via the set of functions F1, . . . , Fn

that occur in c. We write {·} for the empty schema, F for the singleton schema,

and S1 · S2 for the disjoint union of S1 and S2, when dom(S1) ∩ dom(S2) = ∅.

Finally, write S where Θ for the refinement of S by Θ, which models constraints

on configurations. We write dom(S) for the set of function symbols that occur in

S.
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A configuration σ ∈ Config is a partial function from function symbols to

functional values: that is, Config = Fun→ Value ⇀ Value, so formally, Θ ⊆ Config.

To give semantics to schema refinement we need to define what it means for σ to

satisfy a schema. We say σ is a valid configuration of a schema S, written σ |= S,

if, informally, it defines all the function symbols F in S, and their definitions

satisfy all the refinements Θ specified by S. Validity σ |= S is defined formally in

Figure 7.2.

The value of an expression depends on a configuration and a memory, an inter-

pretation of variables µ ∈ Mem = Var → Value. The denotation of an expression

JeK : Config→ Mem ⇀ Value is defined in Figure 7.3: literals v denote themselves;

variables x denote lookups µ(x) in the provided memory µ; operations e ⊕ e′ re-

cursively evaluate e and e′ to values v and v′ (if such values exist) and run the

interpretation of the operator v ⊕̂ v′; and finally, function application F (e) re-

cursively evaluates e to v, looks up F in the configuration σ to get a function

f : Value → Value, and runs f(v). The only way the evaluation of an expression

can be undefined is if F is not in dom(σ).

Next, we define a minimal syntax of boolean formulae: falsehood ⊥, implication

ϕ1 ⇒ ϕ2, equality of expressions e1 = e2, and any of the other abstract binary

comparators e1 ∼ e2 for ∼∈ Comp. We also define the standard derived operations

using standard syntactic sugar (e.g., ¬ϕ , ϕ ⇒ ⊥, ϕ1 ∨ ϕ2 , (¬ϕ1) ⇒ ϕ2, etc.).

The semantics (defined in Figure 7.3) are standard: ⊥ denotes ff; ϕ1 ⇒ ϕ2 is tt if

ϕ2 evaluates to tt or ϕ2 to ff; and comparisons ∼ ∈ Comp are given their semantics

by ∼̂ : Value → Value → 2. We assume = ∈ Comp, with =̂ as Value’s equality

relation.

A program c ∈ While can be one of the following: an assignment (x : = e),
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a sequential composition (c1; c2), a conditional (if(ϕ){c1}{c2}), or a while loop

(while(ϕ){c0}). We write c〈S〉 to indicate that c adheres to a schema S, which

means that the set of function symbols that occur in c is a subset of dom(S). A

program is closed if it uses no functions, that is, it adheres to the empty schema

{·}. We will generally use the metavariables S and T to refer to both a schema

and to the set of its valid configurations.

The full semantics of programs is given in Figure 7.3. A program c, together

with a configuration σ, denotes a partial function on memories JcKσ : Mem ⇀ Mem.

Each component is defined in a standard way, taking the convention that if

one required subcomponent is undefined, then the program itself is undefined. For

instance, to evaluate an assignment x : = e w.r.t. σ ∈ Config and µ ∈ Mem, if

there exists v = JeKσµ, then we update µ’s value of x to be v via the notation

µ{x 7→ v}. However, for brevity’s sake, we’ll simply write µ{x 7→ JeKσµ}. Briefly,

skip denotes the identity function, sequential composition c1; c2 denotes function

composition, the conditional expression if(ϕ){c1}{c2} evaluates c1 if ϕ evaluates

to tt, and c2 otherwise, and finally, while(ϕ){c} denotes a particular least fixpoint,

which is computed w.r.t. the definedness partial order on Mem ⇀ Mem.

7.3.1 Relational Hoare Logic

To reason about pairs of programs, the standard approach is to use relational

hoare logic, sometimes also called Benton Logic [15]. The principle is this: given

two (closed) programs c1 and c2, a pre-condition relation P , and a postcondition

relationQ, we want to answer the following question: given a pair of state satisfying

the input relations, (µ1, µ2) ∈ P , does running both programs on their respective
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Expressions :
e := v
| x
| F (e)
| e⊕ e

Formulae :
ϕ := ⊥
| ϕ⇒ ϕ
| e ∼ e

Commands :
c := skip

| x : = e
| c; c
| if(ϕ){c}{c}
| while(ϕ){c}

x ∈ Var F ∈ Fun
S := {·}
| F
| S · S
| S where Θ

Θ ⊆ Config x ∈ Var F ∈ Fun

JeK(−) : Config→ Mem ⇀ Value

JvKσµ , v

JxKσµ , µ(x)

JF (e)Kσµ , σ(F )(JeKσµ)

Je1 ⊕ e2Kσµ , Je1Kσµ ⊕̂ Je2Kσµ

JϕK(−) : Config→ Mem ⇀ 2

J⊥Kσµ , ff

Jϕ1 ⇒ ϕ2Kσµ ,


tt, Jϕ1Kσµ = ff

tt, Jϕ2Kσµ = tt

ff, otherwise

Je1 ⊕ e2Kσµ , Je1Kσµ ∼̂ Je2Kσµ

JcK(−) : Config→ Mem ⇀ Mem

JskipKσ , λµ. µ

Jx : = eKσ , λµ. µ{x 7→ JeKσµ}
Jc1; c2Kσ , Jc2Kσ ◦ Jc1Kσ

Jif(ϕ){c1}{c2}Kσ , λµ.

{
Jc1Kσµ, JϕKσµ = tt

Jc2Kσµ, JϕKσµ 6= tt

Jwhile(ϕ){c}Kσ , fixλf. λµ.

{
f(JcKσµ), JϕKσµ = tt

µ, JϕKσµ 6= tt

where fix is the least fixpoint operator

v ∈ Value ⊕ ∈ Bin ∼ ∈ Comp
⊕̂ : Value→ Value→ Value

(̂∼) : Value→ Value→ Value

Mem = Var→ Value
Config = Fun ⇀ Value→ Value

Figure 7.3: Syntax (left), denotational semantics (right) , and auxiliary sets (bot-
tom) for While

inputs (JciKµi = µ′i) for i = 1, 2 satisfy the output relation, that is, (µ′1, µ
′
2) ∈ Q.

Notice that this means that we only consider input states on which both c1 and c2

converge. We will define a logical judgment ` c1 ∼ c2 : Φ⇒ Ψ where c1 and c2 are

(closed) programs, and Φ and Ψ are formulae that denote relations on the inputs

and outputs of the programs, respectively.
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E := v | x〈1〉 | x〈2〉 | E ⊕ E Φ := ⊥ | Φ⇒ Φ | E ∼ E

LvMσµ1 µ2 , v

Lx〈1〉Mσµ1 µ2 , µ1(x)

Lx〈2〉Mσµ1 µ2 , µ2(x)

LE1 ⊕ E2Mσµ1 µ2 ,
LE1Mσµ1 µ2 ⊕̂ LE2Mσµ1 µ2

L⊥Mσµ1 µ2 , ff

LE1 ∼ E2Mσµ1 µ2 , LE1Mσµ1 µ2 ∼̂ LE2Mσµ1 µ2

LΦ⇒ ΨMσµ1 µ2 ,


tt, LΦMσµ1 µ2 = ff

tt, LΨMσµ1 µ2 = tt

ff, otherwise

Figure 7.4: The syntax (left) and semantics of relational expressions (middle) and
formulae (right)

Relational Formulae

We specify input and output relations as quantifier-free first-order formulae over

the program variables of the two programs, denoting a function from pairs of

memories (µ1, µ2) ∈ Mem × Mem to a truth value {tt,ff} = 2. The syntax and

semantics can be seen in Figure 7.4. As the two programs may have variable names

in common, we annotate each variable used in a formula with which program it

comes from, writing x〈1〉 or x〈2〉, e.g.. Semantically, this corresponds to µ1(x) and

µ2(x), respectively.

As a convenience, we will define injections from predicates over a single pro-

gram’s variables to relational formulae, which label each variable with a ‘side’. The

types of these injections are shown below; we omit their (unsurprising) definitions:

(−)〈1〉 : Form→ RelForm (−)〈2〉 : Form→ RelForm

where Form is the set of formulae ϕ from Figure 7.3, and RelForm is the set of

formulae Φ from Figure 7.4.
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Relational Program Logic

Most of Benton’s rules (Figure 7.5) read like standard extensions of the familar

Hoare logic axioms. The RHL-Skip axiom says that if both programs are skip

then the program states don’t change. The RHL-Asn axiom runs parallel assign-

ments by subsituting each variable and expression into the appropriate “side” of

the relational postcondition Ψ. RHL-Seq sequences c1 (resp. c′1) with c2 (resp.

c′2) when there exists some intermediate relation that serves as the postcondition

of c1 and c′1 and the precondition of c2 and c′2. But the control structures require

careful synchronization.

Benton’s original axioms and inference rules give us a methodology for an-

alyzing pairs of programs together by exploiting parallel structure between the

programs. For instance, RHL-If, reproduced below, relates the “then” and the

“else” control flow branches, and uses these relationships to prove the relationship

between the full conditionals.

` Φ⇒
(
ϕ〈1〉 ↔ ψ〈2〉

) ` c1 ∼ c′1 :
(
Φ ∧ ϕ〈1〉 ∧ ψ〈2〉

)
⇒ Ψ

` c2 ∼ c′2 :
(
Φ ∧ ¬ϕ〈1〉 ∧ ¬ψ〈2〉

)
⇒ Ψ

` if(ϕ){c1}{c2} ∼ if(ψ){c′1}{c′2} : Φ⇒ Ψ

This rule gives us a proof that the two programs if(ϕ){c1}{c2} and if(ψ){c′1}{c′2}

are related at Φ ⇒ Ψ subject to two conditions: first, the conditions must agree,

enforcing that the programs branch in the same way, and second, the true (resp.

false) branches of each program must be related under the additional assumption

that the condition was true (resp. false).

Note that Benton’s relational hoare logic inference rules are not complete, and

don’t aim for any kind of completeness—for example, one could generalize the

RHL-If rule to something more complex, writing a rule that compares each pair
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` x : = e ∼ y : = e′ : Ψ[e〈1〉, e′〈2〉/x〈1〉, y〈2〉]⇒ Ψ
[RHL-Asn]

` skip ∼ skip : Φ⇒ Φ
[RHL-Skip]

` c1 ∼ c′1 : Φ⇒ Φ′ ` c2 ∼ c′2 : Φ′ ⇒ Ψ

` c1; c2 ∼ c′1; c′2 : Φ⇒ Ψ
[RHL-Seq]

` Φ⇒
(
ϕ〈1〉 ↔ ψ〈2〉

) ` c1 ∼ c′1 : Φ ∧ ϕ〈1〉 ∧ ψ〈2〉 ⇒ Ψ

` c2 ∼ c′2 : Φ ∧ ¬ϕ〈1〉 ∧ ¬ψ〈2〉 ⇒ Ψ

` if(ϕ){c1}{c2} ∼ if(ψ){c′1}{c′2} : Φ⇒ Ψ
[RHL-If]

` c ∼ c′ : Φ ∧ ϕ〈1〉 ⇒ Φ ` Φ⇒
(
ϕ〈1〉 ↔ ψ〈2〉

)
` while(ϕ){c} ∼ while(ψ){c′} : Φ⇒ Φ ∧ ¬ϕ〈1〉

[RHL-While]

` Φ′ ⇒ Φ ` c ∼ c′ : Φ⇒ Ψ ` Ψ⇒ Ψ′

` c ∼ c′ : Φ′ ⇒ Ψ′
[RHL-Sub]

` c ∼ c′ : Φ⇒ Ψ

` c′ ∼ c : Φop ⇒ Ψop
[RHL-Sym]

` c ∼ c′ : Φ⇒ Ψ ` c′ ∼ c′′ : Φ′ ⇒ Ψ′

` c ∼ c′′ : Φ ◦ Φ′ ⇒ Ψ ◦Ψ′
[RHL-Tr]

Figure 7.5: Structural axioms and inference rules for closed programs [15, 9]

of branches, e.g., including c1 and c′2. However, unlike for regular Hoare logic, a

completeness result for relational hoare logic is not readily achievable, and so we

merely provide a simple yet useful set of sound rules.

7.3.2 Reasoning about Programs with RHLenses

To synchronize open programs, we need to not only declare relationship between

our data, but reason about the code that transforms it. We’ll define RHLenses and

RHLens combinators that mirror the axioms and inference rules from relational

hoare logic. To do this, we have concretized the space of our open programs f [·] :

S → A ⇀ B to the semantics of While programs. To synchronize open programs

c1 and c2 that adhere to schemas S and T respectively, we will write RHLenses `
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of the form ` ∈ Jc1K � Jc2K : LΦM∅ ⇒ LΨM∅, where Jc1K : S → Mem ⇀ Mem and

Jc2K : T → Mem ⇀ Mem. However, to ease the notational burden, we’ll simply

write ` ∈ c1〈S〉� c2〈T 〉 : Φ⇒ Ψ.

To start, we’ll specialize some of the lenses from Section 7.2.1 to operate on

schemas and their corresponding configurations. Starting simply, we can define a

simple identity lens idc〈S〉 that produces a lens witnessing equality of c〈S〉. The

underlying lens is simply idS, and the type witnesses extensional equality of c

with itself, assuming the equivalence of all variables read (written reads(c)), and

demonstrating the equality of all variables written to (writes(c)). We construct

this lens as follows. Below, on the left we write the construction of the RHLens

idc〈S〉 in terms of the symmetric lens idS, and on the right we write an inference

rule representing the typing constraints on the construction of idc〈S〉.

idc〈S〉 , idS

X = reads(c) Y = writes(c)

idc〈S〉 ∈ c〈S〉� c〈S〉 :
∧
x∈X

x〈1〉 = x〈2〉 ⇒
∧
y∈Y

y〈1〉 = y〈2〉

Additionally, we can write a frame lens that lets us add disjoint specifications.

For a set of variables X, we write X〈1〉 or X〈2〉 to indicate that set of variables

annotated with a relational “side.” Here we overload vars(−) to compute the

variables that occur in programs or free in formulae.

‖`‖Φ , `

` ∈ c〈S〉� c′〈T 〉 : Ψ⇒ Ψ′

X = vars(c) X ′ = vars(c′) Y = vars(Φ) Z = vars(Ψ)

vars(Φ′) ∩ (X ∪X ′ ∪ Y ∪ Z) = ∅
` ∈ c〈S〉� c′〈T 〉 : Ψ ∧ Φ⇒ Ψ′ ∧ Φ

Combining this lens with skip lets us replicate RHL-Skip via the lens ‖idskip‖−.

We can also define a lens for assignment. Given a lens that relates the con-

figurations used in the two assignments and maintains a relation Θ, we substitute

180



the expressions e and e′ in for x and y on their respective “sides” of Ψ and check

that the preconditon Φ and Θ imply this substitution. Henceforth we’ll use the

metavariable Θ to refer to symbolic versions of a lens’s maintained relation R. We

define the underlying symmetric lens below to the left, and to its right, describe

the typing constraints that must hold in order to construct lens assign `

assign ` , `
` ∈ S ↔ T : Θ ` Θ ∧ Φ⇒ Ψ[e〈1〉, e′〈2〉/x〈1〉, y〈2〉]

` ∈ x : = e〈S〉� y : = e′〈T 〉 : Φ⇒ Ψ

This is more complicated than the standard relational hoare logic rule, which sim-

ply has Ψ′ , Ψ[e〈1〉, e′〈2〉/x〈1〉, y〈2〉] as the precondition. Morally, this lens composes

the synchronization code in ` with the assignments, and so we must check that

these two pieces compose. This is guaranteed by the assumption that Θ∧Φ⇒ Ψ′.

Next, we will reason about sequential products using RHLenses. The sequential

product lens combinator `13`2 takes a lens `1 that relates two programs c1〈S1〉 and

c2〈S2〉 at Φ1 ⇒ Ψ1 and another lens `2 that relates c′1〈T1〉 and c′2〈T2〉 at Φ1 ⇒ Ψ2,

and uses tensor product3 to relate the sequential composition of the two programs.

Below on the left we can see that the underlying symmetric lens is just the tensor

product, and on the right, we show the additional typing constraints required to

typecheck that `1 3`2 is well-formed—namely that `1’s output relation implies `2’s

input relation, and the schemas are disjoint:

`1 3 `2 , `1 ⊗ `2

`1 ∈ c1〈S1〉� c′1〈T1〉 : Φ1 ⇒ Ψ1

`2 ∈ c2〈S2〉� c′2〈T2〉 : Φ2 ⇒ Ψ2

` Ψ1 ⇒ Φ2

dom(S1) ∩ dom(S2) = ∅

dom(T1) ∩ dom(T2) = ∅
`1 3 `2 ∈ c1; c2〈S1 · S2〉� c′1; c′2〈T1 · T2〉 : Φ1 ⇒ Ψ2

3Here, for notational brevity, we’re abusing an isomorphism between pairs of disjiont configs
(σ1, σ2) and disjoint unions of configs σ1 ] σ2
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By design, `1 3 `2 only works with disjoint schemas. This is by design. If we

were to allow (e.g.) S1 and S2 to overlap, say on some symbol F , it’s not clear how

we should construct F ’s value in the putR direction. Should we use the value in

the output computed by `1? by `2? Instead, we simply force the program schemas

to be disjoint.

We can also use the tensor product lens to relate conditional statements. Sim-

ilar to Benton’s rule, we we synchronize the program branches: `1 relates the true

branches when the conditions hold, and `2 relates the false branches when they are

false. This lens and its preconditions are defined formally below:

if(ϕ, ψ) `1 `2 ,

`1 ⊗ `2

`1 ∈ c1〈S1〉� c′1〈T1〉 : Φ ∧ ϕ〈1〉 ∧ ψ〈2〉 ⇒ Ψ

`2 ∈ c2〈S2〉� c′2〈T2〉 : Φ ∧ ¬ϕ〈1〉 ∧ ¬ψ〈2〉 ⇒ Ψ

dom(S1) ∩ dom(S2) = ∅

dom(T1) ∩ dom(T2) = ∅

c0〈S1 · T1〉 = if(ϕ){c1}{c′1}

c′0〈S1 · T2〉 = if(ψ){c2}{c′2}
` Φ⇒

(
ϕ〈1〉 ↔ ψ〈2〉

)
if(ϕ, ψ) `1 `2 ∈ c0 � c′0 : Φ⇒ Ψ

As in sequential composition, we assume that the schemas are disjoint.

To round out our syntactic rules, we can write a lens for reasoning about pairs

of while loops. As in Benton’s original axioms, we relate the two programs with a

relational loop invariant Φ. The underlying symmetric lens is is the same as the

one used to relate the loop bodies, which asserts that Φ holds both before and

after running the loop bodies. Further, it assumes that if we run the loop bodies

when the while condiions are both true, then at the end, the loop conditions are

either both true or both false. This ensures that both loops execute in lock-step.
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RHL-x Skip Asn Seq If While Sub Sym Tr
RHLens ‖idskip‖− assign − 3 if() (−)− subsume() (−)op ◦

Figure 7.6: Correpondence between the RHL proof system and RHLens combina-
tors

We can construct the lens formally as follows:

(`)ϕ , `
` Φ⇒ (ϕ〈1〉 ↔ ϕ〈2〉) ` ∈ c〈S〉� c′〈T 〉 : Φ ∧ ϕ〈1〉 ⇒ Φ

(`)ϕ ∈ while(ϕ){c〈S〉}� while(ϕ){c′〈T 〉} : Φ⇒ Φ ∧ ¬ϕ〈1〉

The final three Hoare logic axioms are RHL-Sym, RHL-Tr, and RHL-Sub,

which allow us to make structural deductions about the relational quadruple itself.

RHL-Sym corresponds directly to the (−)op lens, and RHL-Tr to lens composi-

tion (◦). RHL-Sub permits weakening of the postcondition and strengthening of

the precondition. Our subsumption lens operator does the same, leaving the lens

itself unchanged; it is defined below:

subsumeΦ′

Ψ′(`) , `
` Φ′ ⇒ Φ ` ∈ c1 � c2 : Φ⇒ Ψ ` Ψ⇒ Ψ′

subsumeΦ′

Ψ′(`) ∈ c1 � c2 : Φ′ ⇒ Ψ′

In Figure 7.6 we summarize the relationship between Benton’s logic and the

combinators we presented in this section. The correspondence with Benton’s rela-

tional Hoare logic lets us conclude that RHLenses can be used to reason effectively

about large programs. These operations are structured syntactically—i.e., they

follow the structure of the programs and allow us to provide proofs about them.

In the next section, we’ll present some examples of lenses that manipulate the

configurations in interesting ways.

7.4 Implementation
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module Type = sig

type t

...

end

module Var = struct

type t = {

name: string;

t: Type.t

}

end

module Sym = struct

type t = {f: string;

i: Type.t;

o: Type.t}

end

module type Expr = sig

type t

val bv : int -> width -> t

val var : Var.t -> t

val ( $ ) : Sym.t -> Var.t -> t

val ( $$ ) : Sym.t -> t -> t

val ( - ) : Expr.t -> Expr.t -> t

end

module type Form = sig

type t

val true_ : t

val ( == ) : Expr.t -> Expr.t -> t

val check : Var.t -> t

val ands : Form.t list -> t

end

module type Imp = sig

type t

val skip : t

val (<~) : Var.t -> Expr.t -> t

val seq : t list -> t

val ite : Form.t -> t list -> t list -> t

end

Figure 7.7: Summary of the core data structures and smart constructors in Spec-
tacle.

Our implementation, Spectacle, is an OCaml instantiation of RHLens over a

simple loop-free imperative language with bitvectors (Imp, Figure 7.7). We imple-

mented the core operators from Section 7.3.2 in an LCF-style architecture with an

abstract type of RHLenses, and call out to an SMT solver for proofs in the base

logic. Importantly, our implementation allows users to provide custom, trusted

specified lenses, whose specifications are not verified by Spectacle, but it verifies

all subsetquent reasoning, including all RHLens reasoning. In the remainder of

this section, we’ll use a literate style to desribe Spectacle’s core types.

First, we define our core data type for lenses in the Lens module. Lens com-

prises a single type definition (’k, ’typ) t, which is a record that has the three
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module type Cfg = sig

type fn = Value.t -> Value.t

type t = (Sym.t * fn) list

val set : t -> Sym.t -> fn -> t

val get : t -> Sym.t -> fn

end

module type Lens = sig

type ('k, 'typ) t = {

typ : 'typ;

missing : 'k;

putL : Cfg.t * 'k -> Cfg.t * 'k

putR : Cfg.t * 'k -> Cfg.t * 'k

}

end

Figure 7.8: Modules describing Lenses (right) and the configurations they act upon
(left)

lens components, missing, putL, and putR, as well as an explicit ’typ field, which

we will customize to define our respective typing disciplines for lenses. The defini-

tion of Lens is shown bon the right side of Figure 7.8.

On the left, in Figure 7.8, is the Cfg module, whose type t describes configs

our lenses synchronize. A Cfg.t associates Sym.ts with OCaml function on our

value type (Value.t) that they interpret. The get and set functions enforce that

the config is a well-formed association list (i.e., no duplicate Sym.ts) Notice that

there are some well-formedness constraints that in this prototype must be checked

by hand: for a Sym-valuation pair f, v it must be the case that v is a function from

values of types f.ins to a value of type f.out. We also must check the symmetric

lens laws by hand.

Now, to describe how lenses maintain relations, we’ll define the configuration

schema, Schema, of an open program. A Schema.t describes the function symbols

(symbols) that can occur in a program, as well as a First-order logic refinement

(refine) on those symbols.

module type Schema = sig

type t = {symbols: Sym.t list; refine: Form.t}

end

The symbols field of the record type is a list of Sym.ts, each of which indicates
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a function symbol and its type (c.f. Figure 7.7). The refine record is a formula

(Form.t) that indicates a refinement over those symbols specified in symbols.

Now we can supply lenses with logical specifications over their function symbol.

Such a spec is represented by the Spec.t type below, comprising schemas for each

program being related (left, and right) respectively, and a formula spec relating

those schemas.

module type Spec = sig

type t = { left: Schema.t; right: Schema.t; spec: Form.t; }

end

We use this to concretize the ’typ field to produce the ’k SpecLens.t type,

which corresponds to defines a lens ` ∈ S ↔ T : Θ. In Spectacle, a lens l : ’k

SpecLens.t, where ’k is the type of the complement, l.typ.left corresponds to

S, l.typ.right corresponds to T , and l.typ.spec corresonds to Θ. We can see

this below:

module type SpecLens = sig

type 'k t

val get_lens : 'k t -> ('k, Spec.t) Lens.t

(* PRE: the lens satisfies its spec *)

val trusted : ('k, Spec.t) Lens.t -> 'k t

To maintain the invariant that ’k SpecLens.t lenses are correctly specified,

we leave the type abstract, but expose a function to allow users to provide their

own trusted specified lenses. Now, we can implement a few useful lenses with

specifications. For instance, the identity lens idS described above is given below:

val id : Schema.t -> unit t

The tensor product lens combinator ⊗ is given below as well.

val ( * ) : 'k1 t -> 'k2 t -> 'k1 * 'k2 t
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The copy lens is a bijective RHLens that takes two symbols F and G as parameters

and maps valid configurations σ of F to a valid configurations of G constructing

{G 7→ σ(F )}. The inverse direction is the same, with F and G reversed.

val copy : Sym.t -> Sym.t -> unit t

The duplication lens dup is also a bijective RHLens that takes a symbol F and

copies it (as above) into configurations for the schema G1 ·G2 where G1 ≡ G2, by

copying the configuration F into both G1 and G2.

val dup : Sym.t -> Sym.t * Sym.t -> unit t

...

end

Now to reason relationally about programs, we need a more substantive model

of open programs. We define a simple loop-free imperative language (Imp) over

fixed width bitvectors. The types of the core smart constructors can be seen in

Figure 7.7.

And now we can write down our relational hoare logic quadruple, which takes

two programs (left and right), a precondition (pre) and a postcondition (post).

module type Benton = sig

type t = {left: Imp.t; right: Imp.t; pre: Form.t; post: Form.t;}

val equal : Imp.t -> Imp.t -> t

...

end

We define the equal constructor to help us reason about program equality. It

takes two imperative programs and constructs a quadruple that holds if and only

if the two programs are equivalent.

Now we can create a relational Hoare lens type RH which comprises a specifi-

cation type (spec) and a relational Hoare quadruple (benton)
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module type RH = sig

type t = { spec : Spec.t; benton : Benton.t }

end

Finally, our relational Hoare lenses are created by passing the RH.t in as the

type argument to Lens.t. Keeping ’k t an abstract type lets us maintain the

invariant that the lens actually satisfies its RHLens type.

module type RHLens = sig

type 'k t

val get_lens : 'k t -> ('k, RH.t) Lens.t

Now we can write down the types of some standard operators. As before, we

can directly state the identity lens. Notice that we only need to pass the program

Imp.t because we can compute its schema by reading off the functions it uses.

val id : Imp.t -> unit t

We can define composition in largely the same way as 3. Importantly, we need

to check the implication between the relational post-condition of first lens and

the relational pre-condition of the second. To do this we generate an SMTLIB

expression, and discharge it using the Z3 SMT solver. The type of this operator is

shown below:

val ( *> ) : 'k1 t -> 'k2 t -> ('k1 * 'k2) t

And we can define our injection operator (|=), which performs monolithic reasoning

given a SpecLens and the Benton quadruple that it should satisfy. They type of

(|=) is shown below:

val ( |= ) : 'k SpecLens.t -> Benton.t -> 'k t
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To check the safety of an injection l |= b we must verify that assuming l.typ.spec

implies that b is a valid relational Hoare quadruple. To perform this check, we

construct the product program b.left×b.right, and compute its weakest precon-

dition with respect to b.post. This leaves us with one final obligation: checking

that b.pre implies the weakest precondtion. To discharge this assumption, we

generate an SMTLIB program and use Z3 to check its validity.

val ( |> ) : 'k1 SpecLens.t -> 'k2 SpecLens.t -> ('k1 * 'k2) Speclens.t

Finally we provide a specialized kind of frame rule. We provide a list of variables

xs and produce a formula that establishes the relational equality between the two

programs. Then, the frame operator |&| lets us conjoin this formula to both the

pre- and post- conditions of an RHL l as long as those variables xs do not occur

anywhere in the program in l’s type.

val ( |&| ) : 'k RHLens.t -> Var.t list -> 'k RHLens.t

end

7.5 Case Study: Network Data Plane Programs

In networking, the separation between the control plane and the data plane requires

programmers to relate open programs. In the control plane, high level routing al-

gorithms, compute routing preferences, which then produce dynamically-changing

forwarding tables that instruct the data plane how to forward packets. Often, to

support a diverse set of switch pipelines, network engineers will write their control
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logic against a unified interface such as the Open Compute Project’s Switch Ab-

straction Interface (SAI) [87]. Then, engineers will write complex and error-prone

driver code to translate between the abstract switch and the concrete one.

As a case study, we will show that we can write a concise RHLens.t that main-

tains (and proves) equivalence for dataplane programs. We draw our examples

from Avenir [22], which used program synthesis to map configurations in only one

direction. Our mappings must be written by hand, but provide verified bidirec-

tional transformations with predictable performance.

7.5.1 Source Program

The qualitative benchmarks used in Avenir mimic its deployment in a network with

a single unified abstration. We call this abstraction program source, and we trans-

late its tables to three “target” programs action decompose, lag decompose, and

early validate. Each program is composed of three standard internet processing

blocks: an Ethernet forwarding block, the an IPv4 routing block, and a validation

block. We define each of these in turn.

The Ethernet block has a very simple schema comprised of two configurable

functions eth act and eth port, which each take the 48-bit Ethernet Destina-

tion address: eth act computes a bit indicating whether the packet should be

forwraded, and eth prt computes the 9-bit forwarding port. The Ethernet block

applies these functions to the eth dst variable (definition elided) using the smart

constructor $ specified in Figure 7.7, which constructs an Expr.t corresponding to

the application of a function symbol to a single variable. This program proceeds

as follows: if eth act $ eth dst is 1, the program assigns eth act $ eth dst to
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the port variable.

let e_sch = Schema.{

symbols = [eth_act; eth_dst];

refine = Form.true_

}

let eth =

ite (check (eth_act $ eth_dst)) [

port <~ (eth_prt $ eth_dst)

]

[]

As a sanity check, we can very easily produce the identity lens. All the checks

here are syntactic, which means there’s no need to invoke Z3.

let eth_id : unit RHLens.t = RHLens.id eth

The IP block’s schema has three functions: ip act, ip port and ip dst, whose

definitions are elided. These three functions read the 32-bit ipv4 dst field, then

ip act returns a bit that determines whether the packet should be forwarded. The

forwarding logic consists of setting the port field to ip port $ ipv4 dst, copying

the eth dst field into the eth src variable, and updating the eth dst address

with ip dst $ ipv4 dst, and finally decrementing ipv4 ttl by 1 (represented as

the 8-bit bitvector (bv 1 8)). The IP block (ip) is below shown to the right:

let vld =

ite (check (valid $ ipv4_ttl))

[port <~ bv 511 9]

[]

let source = seq [eth; ip; vld]

let ip = seq [

ite (check (ip_act $ ipv4_dst)) [

port <~ ip_port $ ipv4_dst;

eth_src <~ eth_dst;

eth_dst <~ ip_dst $ ipv4_dst;

] [];

ipv4_ttl <~ ipv4_ttl - bv 1 8

]

Finally the validation block (vld, above left) has had a single function valid,

which reads the IPv4 Time To Live (ipv4 ttl) field, and, returns a single bit,

which decides whether the packet should be assigned the virtual port value bv

511 9, which indicates that the packet should be “dropped,” that is, it should not

be forwarded.
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7.5.2 Action Decompose

Our first target data plane program is called action decompose, it is structurally

similar to source, except that for its IP processing logic. action decompose

decomposes the logic into two blocks: fwd and write. The fwd block is solely re-

sponsible for computing the value of port from the fucntions fwd act and fwd prt,

while the write block is responsible for the remainder of the rewrites, and uses

the functions write act and write dst to do so:

let fwd =

ite (check (fwd_act $ ipv4_dst))

[port <~ fwd_prt $ ipv4_dst]

[]

let action_decompose =

seq [ eth; fwd; write; vld ]

let write = seq [

ite (check (wrt_act $ ipv4_dst)) [

eth_src <~ eth_dst;

eth_dst <~ wrt_prt $ ipv4_dst;

] [];

ipv4_ttl <~ ipv4_ttl - bv 1 8

]

Then, the action decompose pipeline (defined above) is similar to source,

differening only in that the ipv4 block has been replaced with fwd and write.

Now, our goal is to synchronize the functions in action decompose and source

in a way that makes the programs functionally equivalent. That is, we need a lens

that satisfies the following relational Hoare quadruple:

let b = Benton.equal source action_decompose

For equivalence to hold between the two programs, write act, ip act,

and fwd act must be equivalent. We can produce this outcome using the

dup constructor below, which produces a lens between ip act and fwd act ·

write act where fwd act ≡ write act.

let act_dup = dup ip_act fwd_act write_act
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Next, we can relate ip prt and ip dst with fwd prt and ip dst using the

copy lens.

let copies = copy ip_prt fwd_prt * copy ip_dst write_prt

As a first pass, we could reason about the equivalence of these source and

action decompose monolithically, by writing the following lens:

(id eth_schema * act_dup * copy * id vld_schema)

|= Benton.equal source action_decompose

which would compute the weakest precondition of source × action decompose,

and use a solver to discharge the induced implication.

But this fails to make use of the fact that we can align the programs with *>

and (i.e., without invoking a solver) show that the ethernet and validation blocks

are equivalent. Then, we’ll only need to invoke the solver to show that the specs

of act dup and copies are sufficient to prove equality of ip and fwd;write.

We can build our final relational Hoare lens as follows:

(id eth_block |&| [eth_dst; eth_src; ipv4_ttl])

*> (act_dup * copies |= Benton.equal ip_block fwd_write_block)

*> (id vld_block |&| [eth_dst; eth_src; ipv4_ttl])

Notice that we used the frame operator |&| which conjoins relational equality

of the supplied list of variables to the pre and post conditions of the lens, as long

as the variables do not occur anywhere in the lens definition.
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7.5.3 Metadata Decomposition

First, we’re going to rephrase our source IP block using only a single table ip that

returns the bitvector concatenation of the results of ip act, ip prt ip dst. Note

that it’s easy to write a lens that witnesses this equality using the fact that 2n×2m

and 2n+m are isomorphic. We omit this for brevity.

This single-function IP block is shown below to the right. To its right, we show

the decomposition ofthe ip dst table into two tables, a group table, that computes

a group from ip dst, and a group fwd table. This pattern is useful for engineers

who want to assign IP addresses to semantic groups (via group), and then route

those semantic groups together (via group fwd).

let decr = ipv4_ttl <~ ipv4_ttl - bv 1 8

let extr = seq [a <~ extract 0 0 data;

p <~ extract 1 8 data;

d <~ extract 9 57 data]

let blck = seq [

ite (check a) [port <~ p;eth_src <~ eth_dst;eth_dst <~ d][];

decr]

let ip' = seq [data <~ ip $ ip_dst; extr; blck]

let grp = seq [group_id <~ group $ ip_dst;

data <~ group_fwd $ group_id;

extr;blck]

As before, we’ll use *> to leverage the fact that the Ethernet and validation

blocks are equivalent, and focus our attention on relating grp. We’ll need to define

a custom lens decompose that relates a single-function schema F : X → Y and

a two-function schema G1 : X → Z,G2 : Z ↔ Y . Note that we’ve assumed

that G2 is invertible. This will allow us to soundly recover F . Fundamentally,

leftwards direction will compute F := G2 ◦ G1 and store G2 in the complement.

Then the rightwards direction will take G2 out of the complement and compute

G1 := G−1
2 ◦ F .
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In Spectacle, we can ensure specify the invertability of a function f by declaring

another function g and asserting that it is f ’s inverse. The inverses schema

generator defines this below:

let inverses f g = Schema.{symbols=[f; g]; refine= ands [

forall x (var x == f $ g $ var x ); forall y (var y == g $ f $ var y )]}

where x is a variable of the input type of g and y of f.

The type of our decompse lens is below:

val decompose : Sym.t -> Sym.t * Sym.t -> Cfg.fn * Cfg.fn

-> (Cfg.fn * Cfg.fn) SpecLens.t

Note that the lens requires an initial invertible function pair (g, g−1) to work.

These are used to populate the lens’ missing component. We’ll simply provide the

identity function here–writing p id to indicate this pair. The final lens is shown

below

(id eth |&| [eth_dst; eth_src; ipv4_ttl])

*> ((decompose ip group lag_fwd lag_fwd_inv p_id)

|= Benton.equal ip' lag)

*> (id vld_block |&| [eth_dst; eth_src; ipv4_ttl])

Note that we must augment the SpecLens with the appropriate proof that the

relationship shows that ip’ and lag are equal.

7.5.4 Early Validation

Our final example will require us to reason monolithically, because it requires a

full-program transformation. We would like to be able to use our “swap” lens

combinator (>*<) which, via the underlying tensor product combinator, composes

the programs on each side in opposite order. The catch is that it assumes the
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programs on each side, and that specifications use disjoint variable sets. Unfortu-

natley, in this example, moving the validation table from the end of the pipeline to

the beginning requires interaction with the ttl decrementation logic from the fwd

block.

Instead we’ll observe that in the domain of bitvectors (with wraparound se-

mantics), subtraction and addition are inverses of each other. So, we can push

the validate function back through the decremenation by simply decrementing the

input. Of course, going the other direction, the input must be incremented prior

to being passed into the validate function. Spectacleprovides a lens incr dom that

does this: it has the following type:

val incr_dom : Sym.t -> unit SpecLens.t

We can then use invoke a solver to show that this lens proves the safety of swapping

valid table and the ipv4 ttl decrementation:

let validate = drop <~ vld $ ipv4_ttl

let drop_invld = ite (check drop)

[drop <~ BV(511,8)][]

let ttlvld =

incr_dom |= Benton.equal

(seq [decr; validate])

(seq [validate; decr))

Then we can use the swap lens combinator (>*<) to push validate up to the

beginning of the pipeline since it uses disjoint variables from eth and ip. The final

lens4 is the following:

(id_pipe (seq [eth;ip'']) *> ttlvld *> drop)

|> ((id_pipe (seq [eth; ip'']) >*< id_pipe validate)

*> id_pipe drop_invld)

where ip’’ is the same as ip, but with the terminal ttl decrementation com-

mand removed. This lens produces a proof of the equivalence of source and

seq[validate;eth;ip;drop invld].
4ignoring the required framing lenses
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CHAPTER 8

RELATED WORK

Here we summarize the key lines of research related to this thesis.

Analysis of Open Systems Much work has been done in verifying and reason-

ing about open programs, that is programs with some unresolved identifiers, such

as programs that make use of libraries, modules, etc. In general, treating these

functions as true black boxes produces a plethora of false positives. This has been

observed in general purpose programming [34], as well as in the domain of network

programming [72]. The Saturn project is a general purpose framework for the

static analysis of programs that computes program summaries to constrain code

with unknowns [119, 34]. Over the years, various techniques have been proposed

to compute specifications of increasingly high quality for the unresolved identifiers

in programs, whether they be maximal (subject to syntactic constraints) [4], nec-

essary [36], or weakest [23]. The JIST tool leverages bounded model checking in

temporal logics to learn automata that describe interface specifications [5].

Relational Verification Tony Hoare’s original axioms for program verification

provide a robust foundation for reasoning about single programs. Indeed, a series of

papers by Barthe and co-authors have investigated the properties and construction

of product programs to verify relational properties of pairs of programs using single-

program techniques [10, 11].

The original relational Hoare logic axioms were produced by Benton in 2004 [15]

as part of a larger paper describing simple proof systems for pairs of programs.

These proof systems have been expanded on over the years moving beyond Benton’s

syntactically driven rules, introducing rules that manipulate a single program at a
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time [11, 12], or provide general purpose structural properies of program pairs, we

a modernized [9] version of Benton’s original proof system [15].

Relational verification problems for open systems occur quite often in the do-

main of databases. In fact our terminology of “schema” is borrowed from this

domain. However instead of “configurations” they refer to ”instances.” There are

many techniques for relating two programs over disparate schemas such as data

migration [96], data exchange/integration [44, 43], schema mappings [79], as well

as techniques for verifing the equivalence of systems over disparate schemas [117].

However, the effectiveness of these techniques relies on domain-specific assump-

tions about databases such as their finite-relational structure, and robust logical

interfaces (e.g., SQL, Datalog). The RHLens framework proposed in this paper

is general purpose, allowing robust, terminating data synchronization to maintain

relational properties.

Bidirectional Programming Over the past two decades, lenses have become

a key abstraction for bidirectional data transformations. Initially introduced to

reason about the view-update problem in databases, ensuring that changes in one

view of the data are reflected in the data source [48]. This foundational work on

lenses has been extended in several ways, notably with symmetric lenses, which

allow bidirectional updates to be applied consistently in both directions, ensuring

round-trip correctness [57]. Our work is based on this core symmetric lens for-

malism. Another major development is the introduction of quotient lenses, which

generalize lenses by allowing transformations that respect equivalence relations on

data structures, providing a more flexible mechanism for bidirectional updates in

the presence of complex data equivalence [49]. Our work is the first to describe

combinators for lenses that preserve relational properties on the programs that

198



invoke the synchronized data.

Synthesis. Avenir is based on Sketching [103], wherein the programmer is al-

lowed to insert unknown “holes” into a program that are filled using CEGIS [104].

Sketching has been used to build a code generator for packet-processing switch

pipelines [53]. NetComplete [39] allows network operators to express their intent

by sketching parts of the intended configuration for refactoring or updating pur-

poses. Our novelty is to use sketching to synthesize control plane mappings.

Another use of synthesis is to generate implementations from high-level speci-

fications, e.g., stratified Datalog[40], regular expressions with uninterpreted func-

tions [98], first-order logic constraints [18], and LTL [74].

P4 Verification. There are several recent projects on verifying P4 program prop-

erties. Lopes et al. developed an operational semantics for P4 and developed a

verification tool based on Datalog which can check program equivalence [77]. P4K

presented an operational semantics for P4 using the K framework [66]. p4pktgen

uses symbolic execution to generate test cases for P4 programs [83]. Our symbolic

compilation is informed by previous work [72, 112, 36, 108, 38, ?], though we are the

first to prove our modeling approach correct. The p4v paper informally posed the

problem of ci-spec inference [72]. The Π4 paper presents a dependent refinement

type system for modular verification in the style of p4v [38]. The p4-constraints

library offers a language for specifying ci-specs [107], but the language is seman-

tically restricted and does not provide an inference mechanism. The p4testgen

tool generates test cases for P4 programs, and can reason about ci-specs expressed

in p4-constraints to reduce false alarms [97].
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Network Virtualization. There are many SDN controllers, such as POX [93],

NOX [55], and Open Daylight [89]. A few of them specifically target the problem

of flow rule composition, including the Frenetic language and controller [51] and

Pyretic [80]. Other efforts have focused on network virtualization, i.e., mapping

abstract specifications down to target realizations, such as ONIX [69]. FlowVi-

sor [99], CoVisor [61] and the NetKAT compiler [102]. Among this work, Avenir is

unique in developing an approach to managing heterogeneous abstract and target

pipelines.

Logical Abduction. QE-driven maximal spec inference has been well-studied in

the formal methods literature [3, 35, 33]. In particular, the MaxSafeSpec algo-

rithm can be used to produce “maximal” conjunctions of single-table specs.1 Here,

maximal does not mean “weakest,” rather, it means that none of the single-table

conjuncts can be safely weakened. This notion is indeed stronger than weakness:

“maximal” specs are often non-trivially more restrictive than the weakest specs.

Specification Inference. The spyro tool [92] provides a general-purpose

framework for spec synthesis which summarizes arbitrary queries from given DSL.

In contrast, while our work is specialized to the domain of data planes, Capisce

infers a precise ci-spec, without requiring a specific DSL. Further, while spyro’s

algorithm uses a syntactic CeGIS algorithm, our approach is more semantic—we

compute ci-specs using deductive tools: symbolic analyses and Qe.

Finally, Config2Spec [18], infers control properties f traditional networks using a

refinement loop that uses both emulation and verification to generate high quality

1The MaxSafeSpec algorithm uses general functions as its core model. In our domain we
would specialize their general functions to table calls
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properties. Config2Spec focuses on network-wide control properties, while Capisce

focuses on safe configs for individual switches.

Control Plane Verification & Synthesis Netkat takes a (co-)algebraic ap-

proach to specifying, verifying and compiling network-wide control planes [6].

Work on synthesizing consistent updates shows how to synthesize network up-

dates so that each packet views a consistent snapshot of the network [75]. Gen-

esis [110], NetComplete [39], and Propane/AT [14] all synthesize legacy network

configs from high-level specifications. Recent work on P4R-Type [71] develops a

typed variant of P4Runtime, the generic control-plane API used by P4 programs.

While P4Runtime enforces some type constraints dynamically, P4R-Type guaran-

tees that type errors will not arise at runtime.
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CHAPTER 9

CONCLUSION

If there is a guiding light of networking design, it is Jon Postel’s Robustness Prin-

ciple:

Be conservative in what you do,

be liberal in what you accept from others.

—Jon Postel

As applied to traditional networking, this maxim covers packet parsing, and packet

processing. To be liberal in what you accept from others, in the networking domain,

is to accept any packet shape that the network will throw at you, no matter how

maliciously designed or how ill-intentioned it is. The point is to have robust packet

parsing and inspection logic that will handle all packets. The flipside of this maxim

is to assume that other network devices have not been so well-designed. Rather

than using obscure protocols or type conditions on packets, network devices should

endeavor to use the most standard and simple solution to their problems.

As we’ve seen throughout the course of this dissertation, this maxim does not

apply to our subprime meridian: the interface between the control and the data

plane. Instead, the onus is on the control plane to be conservative in how it

configures the data plane. This dissertation has provided a series of techniques

that help the control plane do just that.

SafeP4 In Section 2.1 and Chapter 3, we developed an occurence-style type

system for data plane programs to catch bugs related to header validity. We
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characterized a set of reasonable assumptions about the control plane’s interactions

with the data plane, forming a simple kind of specification inference. We showed

that we were able to detect and fix errors in programmable data planes. However,

the specifications we computed we simple and heuristic.

Capisce We generalized this simple approach in Chapter 5, using our Capisce

tool, which computes the weakest, safe control interface spec (ci-specs). Further,

the ci-specs are efficiently control monitorable, that is, they have polynomial ex-

pression complexity. We showed that we could compute ci-specs for industrial and

academic research programs. Now, data plane engineers can clearly comunicate

their configuration assumptions to the control plane engineers.

Avenir Not to leave the control engineers high and dry, we described a system for

computing configurations that satisfy a given specification, optimizing for practical

use cases where that specification is expressed in the form of an abstract packet

processing pipeline. In Chapter 6 we developed a tool, Avenir, based on counter-

example guided synthesis, which can efficiently compute specifications for a wide

variety of targets, including industrial-grade targets, with minimal overhead. How-

ever, Avenir’s completeness guarantees are configuration-dependent, meaning that

it may be the case that for a given pair of pipelines, Avenir successfuly maps one

configuration σ, but fails to map another, σ′.

Relational Hoare Lenses Finally, in Chapter 7, we presented Relational Hoare

Lenses, a general purpose framework for reasoning about synchronizing pairs of

configurable programs. The Relational Hoare Lenses framework combines insights

from Relational program logic and symmetric lenses, to derive a set of simple
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combinators that permit elegant and ergonomic synchronization programs that

carry along their equivalence proofs. We replicate an experiment from Chapter 6

to prove that lenses synchronize pairs of pipelines while preserving equivalence.

9.1 Future Work

Cost-Aware Network Models The synthesis and semantic approaches to

pipeline synchronization do not capture any information about the cost of var-

ious resources. At a simple level, hardware resources that implement match-action

tables are often of a fixed-size. From the control-plane’s perspective that means

that they can only support a finite number of rules. However, both Avenir and

our pipeline models in the work on Relational Hoare lenses ignore this detail,

assuming that the hardware can support as many rules as is required to imple-

ment the abstract functionality. Further, different kinds of hardware, such as

content-addressable memory (CAM) and ternary CAM (TCAM) have different

cost requirements, e.g. in terms of time spent to insert rules and power required

to use them. Building synthesis and verification tools that preserve or minimize

cost models here is important for providing robust abstract interfaces for network

devices.

Relational Synthesis Further, for certain networking tables that require rapid

and predictable re-configuration, the overhead of invoking a dynamic synthesis

loop like Avenir will greatly limit the ability of the network to react to changes.

Instead, we would like to synthesize static code that can be deployed in the control

that realizes these control plane mappings. One potentiall way to do this would be

to synthesize relational hoare lenses, which would synthesize altogether a control
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plane mapping lens, a proof of equialence, and the ci-specs required to make the

proof of equivalence (and the lens laws) hold. We believe that the antiunification

observations we made in Avenir’s template and theorem caches could provide the

foundation for such an algorithm.

New Applications for Specificaiton Synthesis Finally, the techniques that

we’ve applied here are relatively general, and can be applied across domains.

Capisce’s algorithms for ci-spec inference should be portable to other domains that

admit quantifier elimination, for instance computing data integrity constraints for

a database management system (DBMS). The ability to efficiently monitor the

computed specifications could be useful in runtime-monitoring systems that are

relatively un-verifiable, such as artificial intelligence systems.

New Applications for Relational Hoare Lenses The work on RHLenses

has a very broad set of potential applications. For instance, it has potential

applications in compiling between interpreted langauges. The lens would rep-

resent compilers between the two languages, and the relational verification would

prove equivalence between the interpreters or runtime systems. Moving in a dif-

ferent direction, RHLenses could be used as a framework for verifying database

migrations—the databases instances represent the schema and the programs are

the database applications themselves. In a general sense, the RHLenses provide a

robust and general framework for building verified software across many domains.

205



BIBLIOGRAPHY

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases,
volume 8. Addison-Wesley Reading, 1995.

[2] Kinan Dak Albab, Jonathan DiLorenzo, Stefan Heule, Ali Kheradmand, Stef-
fen Smolka, Konstantin Weitz, Muhammad Timarzi, Jiaqi Gao, and Minlan
Yu. Switchv: Automated sdn switch validation with p4 models. In Pro-
ceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page
365–379, New York, NY, USA, 2022. Association for Computing Machinery.

[3] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. Maximal specification syn-
thesis. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’16, page 789–801,
New York, NY, USA, 2016. Association for Computing Machinery.

[4] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. Maximal specification
synthesis. ACM SIGPLAN Notices, 51(1):789–801, 2016.
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213



synthesis of network updates. volume 50, page 196–207, New York, NY,
USA, jun 2015. Association for Computing Machinery.

[76] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
Flow: Enabling Innovation in Campus Networks. SIGCOMM Computer
Communication Review (CCR), 38(2):69–74, March 2008.

[77] Nick McKeown, Dan Talayco, George Varghese, Nuno Lopes, Nikolaj
Bjørner, and Andrey Rybalchenko. Automatically verifying reachability
and well-formedness in P4 Networks. Technical Report MSR-TR-2016-65,
September 2016.

[78] Lambert Meertens. Designing constraint maintainers for user interaction. 07
1998.

[79] Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Ling-Ling Yan,
C. T. Howard Ho, Ronald Fagin, and Lucian Popa. The clio project: Man-
aging heterogeneity. SIGMOD Rec., 30(1):78–83, 2001.

[80] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and
David Walker. Composing Software-Defined Networks. In USENIX Sym-
posium on Networked Systems Design and Implementation, Lombard, IL
(NSDI), pages 1–14, April 2013.

[81] David A. Naumann. Thirty-seven years of relational hoare logic: Remarks
on its principles and history. In International Symposium on Leveraging
Applications of Formal Methods (ISoLA), pages 93–116, 2020.

[82] Barefoot Networks. Behavioral model, Dec 2018.
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