Constructing and (some) classification of integer matrices with integer eigenvalues

Chris Towse* and Eric Campbell

Scripps College
Pomona College

January 6, 2017

Solve a linear system:

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}
$$

Solve a linear system:

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}
$$

Answer:

$$
\mathbf{x}=C_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+C_{2} \mathbf{v}_{2} e^{\lambda_{2} t}
$$

Solve a linear system:

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}
$$

Answer:

$$
\mathbf{x}=C_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+C_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+\cdots+C_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

... or something similar.

An example:

$$
A=\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right)
$$

An example:

$$
A=\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right)
$$

Eigenvalues are $\lambda=1,1,5$.

An example:

$$
A=\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right)
$$

Eigenvalues are $\lambda=1,1,5$.
So the characteristic polynomial is $\chi_{A}(x)=x^{3}-7 x^{2}+11 x-5$.

An example:

$$
A=\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right)
$$

Eigenvalues are $\lambda=1,1,5$.
So the characteristic polynomial is $\chi_{A}(x)=x^{3}-7 x^{2}+11 x-5$.
Reasonable?

GOAL: Construct a matrix A with relatively small integer entries and with relatively small integer eigenvalues. (IMIE)

Such an A will be a good example.

GOAL: Construct a matrix A with relatively small integer entries and with relatively small integer eigenvalues. (IMIE)

Such an A will be a good example. Note: Martin and Wong, "Almost all integer matrices have no integer eigenvalues"

Recall/notation:

$$
A=P D P^{-1}
$$

where

$$
P=\left(\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
\vec{u}_{1} & \overrightarrow{u_{2}} & \cdots & \vec{u}_{n} \\
\mid & \mid & \cdots & \mid
\end{array}\right)
$$

has columns which form a basis of eigenvectors for A and $D=\left\langle\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\rangle$ is the diagonal matrix with corresponding eigenvalues on the diagonal.

Our example:

$$
\begin{gathered}
A=\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right) \\
D=\langle 1,1,5\rangle
\end{gathered}
$$

And in this case,

$$
\begin{gathered}
P=\left(\begin{array}{ccc}
-2 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \\
A=P D P^{-1} .
\end{gathered}
$$

Idea: With the same P, try $P D P^{-1}$ for $D=\langle 1,3,5\rangle$.

Idea: With the same P, try $P D P^{-1}$ for $D=\langle 1,3,5\rangle$. Then

$$
P\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right) P^{-1}=\left(\begin{array}{ccc}
5 / 2 & 3 & -1 / 2 \\
1 & 3 & 1 \\
1 / 2 & 1 & 7 / 2
\end{array}\right)
$$

The problem is that

$$
P^{-1}=(1 / 4)\left(\begin{array}{ccc}
-1 & 2 & -1 \\
-1 & -2 & 3 \\
1 & 2 & 1
\end{array}\right)
$$

The problem is that

$$
P^{-1}=(1 / 4)\left(\begin{array}{ccc}
-1 & 2 & -1 \\
-1 & -2 & 3 \\
1 & 2 & 1
\end{array}\right)=\frac{1}{\operatorname{det} P} P^{\mathrm{adj}}
$$

Or, really, that $\operatorname{det} P=4$.

Constructing and (some) classification of integer matrices with integer eigenvalues
$\left\llcorner_{\text {First approach }}\right.$
-Failure

Solutions:

Solutions:

1. Choose P with $\operatorname{det} P= \pm 1$. (New problem!)

Solutions:

1. Choose P with $\operatorname{det} P= \pm 1$. (New problem!)
2. If $k=\operatorname{det} P$, choose eigenvalues that are all multiples of k. (But probably avoid 0.)

Solutions:

1. Choose P with $\operatorname{det} P= \pm 1$. (New problem!)
2. If $k=\operatorname{det} P$, choose eigenvalues that are all multiples of k.
(But probably avoid 0.)
But actually ...

Proposition (Eigenvalues congruent to b modulo k)

Let P be an $n \times n$ invertible matrix with $k=\operatorname{det} P \neq 0$. Suppose every $\lambda_{i} \equiv b \bmod k$. (So all the λ_{i} 's are congruent to each other.) Then $A=P\left\langle\lambda_{1}, \ldots, \lambda_{n}\right\rangle P^{-1}$ is integral.

Proposition (Eigenvalues congruent to b modulo k)

Let P be an $n \times n$ invertible matrix with $k=\operatorname{det} P \neq 0$. Suppose every $\lambda_{i} \equiv b \bmod k$. (So all the λ_{i} 's are congruent to each other.) Then $A=P\left\langle\lambda_{1}, \ldots, \lambda_{n}\right\rangle P^{-1}$ is integral.

For example,

$$
P\langle 1,-3,5\rangle P^{-1}=\left(\begin{array}{ccc}
1 & 0 & 4 \\
1 & 3 & 1 \\
2 & 4 & -1
\end{array}\right)
$$

Proposition (Eigenvalues congruent to b modulo k)

Let P be an $n \times n$ invertible matrix with $k=\operatorname{det} P \neq 0$. Suppose every $\lambda_{i} \equiv b \bmod k$. (So all the λ_{i} 's are congruent to each other.) Then $A=P\left\langle\lambda_{1}, \ldots, \lambda_{n}\right\rangle P^{-1}$ is integral.

For example,

$$
P\langle 1,-3,5\rangle P^{-1}=\left(\begin{array}{ccc}
1 & 0 & 4 \\
1 & 3 & 1 \\
2 & 4 & -1
\end{array}\right)
$$

which has $\chi(x)=x^{3}-3 x^{2}-13 x+15=(x-1)(x+3)(x-5)$.

Proposition (Eigenvalues congruent to b modulo k)

Let P be an $n \times n$ invertible matrix with $k=\operatorname{det} P \neq 0$. Suppose every $\lambda_{i} \equiv b \bmod k$. (So all the λ_{i} 's are congruent to each other.) Then $A=P\left\langle\lambda_{1}, \ldots, \lambda_{n}\right\rangle P^{-1}$ is integral.

For example,

$$
P\langle 1,-3,5\rangle P^{-1}=\left(\begin{array}{ccc}
1 & 0 & 4 \\
1 & 3 & 1 \\
2 & 4 & -1
\end{array}\right)
$$

which has $\chi(x)=x^{3}-3 x^{2}-13 x+15=(x-1)(x+3)(x-5)$.
Good?

Eric Campbell (Pomona) created a web app

Eric Campbell (Pomona) created a web app

http://ericthewry.github.io/integer_matrices/

Eric Campbell (Pomona) created a web app

http://ericthewry.github.io/integer_matrices/
Input: eigenvectors (really P)
Select good eigenvalues
Output: IMIE and its characteristic polynomial

Constructing and (some) classification of integer matrices with integer eigenvalues
$L_{\text {A different approach }}$

Proposition

If X is invertible than $X Y$ and $Y X$ have the same characteristic polynomials.

Proposition

If X is invertible than $X Y$ and $Y X$ have the same characteristic polynomials.

Idea [Renaud, 1983]: Take X, Y integer matrices. If $Y X$ is upper (or lower) triangular then the eigenvalues are the diagonal elements, hence integers. So $X Y$ will be a good example.

Proposition

If X is invertible than $X Y$ and $Y X$ have the same characteristic polynomials.

Idea [Renaud, 1983]: Take X, Y integer matrices. If $Y X$ is upper (or lower) triangular then the eigenvalues are the diagonal elements, hence integers. So $X Y$ will be a good example.

If X and Y are $n \times n$, we are imposing $n(n-1) / 2$ othogonality conditions on the rows of Y and columns of X.

Let $X=\left(\begin{array}{cc}1 & 2 \\ -3 & 2\end{array}\right)$ and $Y=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$.
Then $X Y=\left(\begin{array}{cc}7 & 4 \\ 3 & -4\end{array}\right)$ has the same eigenvalues as
$Y X=\left(\begin{array}{cc}-5 & * \\ 0 & 8\end{array}\right)$, namely $\lambda=-5,8$.

Let $X=\left(\begin{array}{cc}1 & 2 \\ -3 & 2\end{array}\right)$ and $Y=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$.
Then $X Y=\left(\begin{array}{cc}7 & 4 \\ 3 & -4\end{array}\right)$ has the same eigenvalues as
$Y X=\left(\begin{array}{cc}-5 & * \\ 0 & 8\end{array}\right)$, namely $\lambda=-5,8$.

Starting with X, the only condition on Y is that the second row of Y must be orthogonal to the first row of X.

Better fact:

Theorem (Folk Theorem)

Let U be an $r \times s$ matrix and V be an $s \times r$ matrix, where $r \leq s$. Then $\chi u v(x)=x^{s-r} \chi v u(x)$.

Better fact:

Theorem (Folk Theorem)

Let U be an $r \times s$ matrix and V be an $s \times r$ matrix, where $r \leq s$. Then $\chi u v(x)=x^{s-r} \chi \cup u(x)$.

Proof idea (due to Horn and Johnson): $\left(\begin{array}{cc}U V & 0 \\ V & 0\end{array}\right) \sim\left(\begin{array}{cc}0 & 0 \\ V & V U\end{array}\right)$

Better fact:

Theorem (Folk Theorem)

Let U be an $r \times s$ matrix and V be an $s \times r$ matrix, where $r \leq s$. Then $\chi u v(x)=x^{s-r} \chi v u(x)$.

Proof idea (due to Horn and Johnson):
$\left(\begin{array}{cc}U V & 0 \\ V & 0\end{array}\right) \sim\left(\begin{array}{cc}0 & 0 \\ V & V U\end{array}\right)$
via $\left(\begin{array}{cc}I_{r} & U \\ 0 & I_{s}\end{array}\right)$.

In other words, $U V$ and $V U$ have nearly the same characteristic polynomials and nearly the same eigenvalues.

The only difference: 0 is a eigenvalue of the larger matrix, repeated as necessary.

For now, let us take U to be $n \times(n-1)$ and V to be $(n-1) \times n$.

An example. Begin with

$$
\begin{aligned}
U & =\left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & 2 \\
1 & 2 & 1 \\
0 & -2 & 2
\end{array}\right) \\
V & =\left(\begin{array}{cccc}
1 & -2 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
1 & 2 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Then

$$
V U=\left(\begin{array}{ccc}
2 & 0 & -4 \\
0 & -3 & 4 \\
0 & 0 & 2
\end{array}\right)
$$

Then

$$
V U=\left(\begin{array}{ccc}
2 & 0 & -4 \\
0 & -3 & 4 \\
0 & 0 & 2
\end{array}\right)
$$

with eigenvalues $\lambda=2,-3,2$

Then

$$
V U=\left(\begin{array}{ccc}
2 & 0 & -4 \\
0 & -3 & 4 \\
0 & 0 & 2
\end{array}\right)
$$

with eigenvalues $\lambda=2,-3,2$ and

$$
U V=\left(\begin{array}{cccc}
-4 & -10 & 6 & 0 \\
1 & 3 & -1 & 3 \\
0 & -2 & 2 & 4 \\
4 & 6 & -4 & 0
\end{array}\right)
$$

So $U V$ is an integer matrix with eigenvalues $\lambda=2,-3,2$

Then

$$
V U=\left(\begin{array}{ccc}
2 & 0 & -4 \\
0 & -3 & 4 \\
0 & 0 & 2
\end{array}\right)
$$

with eigenvalues $\lambda=2,-3,2$ and

$$
U V=\left(\begin{array}{cccc}
-4 & -10 & 6 & 0 \\
1 & 3 & -1 & 3 \\
0 & -2 & 2 & 4 \\
4 & 6 & -4 & 0
\end{array}\right)
$$

So $U V$ is an integer matrix with eigenvalues $\lambda=2,-3,2$ and $\lambda=0$.

Writing

$$
\begin{aligned}
& U=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\vec{u}_{1} & \overrightarrow{u_{2}} & \vec{u}_{3} \\
\mid & \mid & \mid
\end{array}\right) \\
& V=\left(\begin{array}{ccc}
- & \overrightarrow{v_{1}} & - \\
- & \overrightarrow{v_{2}} & - \\
- & \overrightarrow{v_{3}} & -
\end{array}\right)
\end{aligned}
$$

Writing

$$
\begin{aligned}
& U=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\vec{u}_{1} & \overrightarrow{u_{2}} & \vec{u}_{3} \\
\mid & \mid & \mid
\end{array}\right) \\
& V=\left(\begin{array}{ccc}
- & \overrightarrow{v_{1}} & - \\
- & \overrightarrow{v_{2}} & - \\
- & \overrightarrow{v_{3}} & -
\end{array}\right)
\end{aligned}
$$

We needed $\overrightarrow{v_{2}} \cdot \overrightarrow{u_{1}}=\overrightarrow{v_{3}} \cdot \overrightarrow{u_{1}}=\overrightarrow{v_{3}} \cdot \overrightarrow{u_{2}}=0$.

Writing

$$
\begin{aligned}
& U=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \overrightarrow{u_{3}} \\
\mid & \mid & \mid
\end{array}\right) \\
& V=\left(\begin{array}{ccc}
- & \overrightarrow{v_{1}} & - \\
- & \overrightarrow{v_{2}} & - \\
- & \overrightarrow{v_{3}} & -
\end{array}\right)
\end{aligned}
$$

We needed $\overrightarrow{v_{2}} \cdot \overrightarrow{u_{1}}=\overrightarrow{v_{3}} \cdot \overrightarrow{u_{1}}=\overrightarrow{v_{3}} \cdot \overrightarrow{u_{2}}=0$.
Then the eigenvalues of $U V$ are the three dot products $\vec{v}_{i} \cdot \vec{u}_{i}$ and 0 .

Note: we now only need an $(n-1) \times(n-1)$ matrix to be triangular. There are now $(n-1)(n-2) / 2$ orthogonality conditions.

Note: we now only need an $(n-1) \times(n-1)$ matrix to be triangular. There are now $(n-1)(n-2) / 2$ orthogonality conditions.

This means there are no conditions to be checked in order to construct a 2×2 example.

Any

$$
\binom{u_{1}}{u_{2}}\left(\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} v_{1} & u_{1} v_{2} \\
u_{2} v_{1} & u_{2} v_{2}
\end{array}\right)
$$

is an integer matrix with eigenvalues 0 and $u_{1} v_{1}+u_{2} v_{2}$.

Any

$$
\binom{u_{1}}{u_{2}}\left(\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} v_{1} & u_{1} v_{2} \\
u_{2} v_{1} & u_{2} v_{2}
\end{array}\right)
$$

is an integer matrix with eigenvalues 0 and $u_{1} v_{1}+u_{2} v_{2}$.
E.g.

$$
\binom{2}{1}\left(\begin{array}{ll}
1 & -4
\end{array}\right)=\left(\begin{array}{ll}
2 & -8 \\
1 & -4
\end{array}\right)
$$

$\lambda=-2,0$

Disadvantages:

- We always get 0 as an eigenvalue.
-What are the eigenvectors?
Advantage:
- This is (nearly) a complete characterization for these matrices.
$L_{\text {A different approach }}$
LA shift by b

Great tool No. 2:

Great tool No. 2:

Proposition (Shift Proposition)

If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Great tool No. 2:

Proposition (Shift Proposition)

If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
Then $A+b I_{n}$ has eigenvalues $b+\lambda_{1}, \ldots, b+\lambda_{n}$.

Great tool No. 2:

Proposition (Shift Proposition)

If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
Then $A+b I_{n}$ has eigenvalues $b+\lambda_{1}, \ldots, b+\lambda_{n}$.
Why does this work? Note that A and $A+b l$ have the same eigenvectors.

Example:

$$
V U=\left(\begin{array}{ccc}
2 & 0 & -4 \\
0 & -3 & 4 \\
0 & 0 & 2
\end{array}\right) \quad \text { so } \quad U V=\left(\begin{array}{cccc}
-4 & -10 & 6 & 0 \\
1 & 3 & -1 & 3 \\
0 & -2 & 2 & 4 \\
4 & 6 & -4 & 0
\end{array}\right)
$$

has eigenvalues $2,-3,2,0$.

Example:

$$
V U=\left(\begin{array}{ccc}
2 & 0 & -4 \\
0 & -3 & 4 \\
0 & 0 & 2
\end{array}\right) \quad \text { so } \quad U V=\left(\begin{array}{cccc}
-4 & -10 & 6 & 0 \\
1 & 3 & -1 & 3 \\
0 & -2 & 2 & 4 \\
4 & 6 & -4 & 0
\end{array}\right)
$$

has eigenvalues $2,-3,2,0$.
So

$$
A=U V-I=\left(\begin{array}{cccc}
-5 & -10 & 6 & 0 \\
1 & 2 & -1 & 3 \\
0 & -2 & 1 & 4 \\
4 & 6 & -4 & -1
\end{array}\right)
$$

has eigenvalues $1,-4,1,-1$.

Earlier we had

$$
U V=\binom{2}{1}\left(\begin{array}{ll}
1 & -4
\end{array}\right)=\left(\begin{array}{ll}
2 & -8 \\
1 & -4
\end{array}\right)
$$

with $\lambda=-2,0$

Earlier we had

$$
U V=\binom{2}{1}\left(\begin{array}{ll}
1 & -4
\end{array}\right)=\left(\begin{array}{ll}
2 & -8 \\
1 & -4
\end{array}\right)
$$

with $\lambda=-2,0$
So

$$
U V+I=\left(\begin{array}{ll}
3 & -8 \\
1 & -3
\end{array}\right)
$$

has eigenvalues $\lambda=-1,1$.

Note: This gives a quick proof to our Eigenvalues Congruent to b modulo k Proposition.

Constructing and (some) classification of integer matrices with integer eigenvalues
LClassification Results

This is actually a classification of all IMIEs.

Theorem (Renaud)

Every $n \times n$ integer matrix with integer eigenvalues can be written as a $U V+b I_{n}$ where $V U$ is a triangular $(n-1) \times(n-1)$ matrix.

This is actually a classification of all IMIEs.

Theorem (Renaud)

Every $n \times n$ integer matrix with integer eigenvalues can be written as a $U V+b I_{n}$ where $V U$ is a triangular $(n-1) \times(n-1)$ matrix.

Note: U is $n \times(n-1)$ and V is $(n-1) \times n$.

Is there any way to take further advantage of the Folk Theorem?

Is there any way to take further advantage of the Folk Theorem?
What if U is $n \times r$ and V is $r \times n$?

Is there any way to take further advantage of the Folk Theorem?
What if U is $n \times r$ and V is $r \times n$?
In particular, if U is $n \times 1$ and V is $1 \times n$ then $V U$ is trivially triangular.

Take $U=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $V=\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)$.
Then $V U=(4)$ and $U V$ must be a 3×3 integer matrix with eigenvalues $4,0,0$.

Take $U=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $V=\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)$.
Then $V U=(4)$ and $U V$ must be a 3×3 integer matrix with eigenvalues $4,0,0$.
In fact $U V+I_{3}=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)=A$, our original example.

Constructing and (some) classification of integer matrices with integer eigenvalues
LClassification Results
$\left\llcorner_{\text {Further refinements }}\right.$

What about the eigenvectors of $U V$?

What about the eigenvectors of $U V$?
Suppose $V U$ is not just triangular, but diagonal.

What about the eigenvectors of UV?
Suppose $V U$ is not just triangular, but diagonal.
Then the $(n-1)$ columns of U are eigenvectors corresponding to the $\lambda_{1}, \ldots, \lambda_{n-1}$.

What about the eigenvectors of $U V$?
Suppose $V U$ is not just triangular, but diagonal.
Then the $(n-1)$ columns of U are eigenvectors corresponding to the $\lambda_{1}, \ldots, \lambda_{n-1}$.
Any vector, \vec{w} in the null space of V is an eigenvector corresponding to b.

$$
\text { Example. } U=\left(\begin{array}{cc}
-3 & -2 \\
1 & 0 \\
1 & 2
\end{array}\right) \text { and } V=\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

Example. $U=\left(\begin{array}{cc}-3 & -2 \\ 1 & 0 \\ 1 & 2\end{array}\right)$ and $V=\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1\end{array}\right)$.
Then $V U=\left(\begin{array}{cc}-4 & 0 \\ 0 & -2\end{array}\right)$, diagonal.
So the columns of U are eigenvectors (corresponding to $\lambda=-4,-2$, resp.) of

$$
U V=\left(\begin{array}{ccc}
-3 & 2 & 1 \\
1 & -2 & 1 \\
1 & 2 & -3
\end{array}\right)
$$

Example. $U=\left(\begin{array}{cc}-3 & -2 \\ 1 & 0 \\ 1 & 2\end{array}\right)$ and $V=\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1\end{array}\right)$.
Then $V U=\left(\begin{array}{cc}-4 & 0 \\ 0 & -2\end{array}\right)$, diagonal.
So the columns of U are eigenvectors (corresponding to $\lambda=-4,-2$, resp.) of

$$
U V=\left(\begin{array}{ccc}
-3 & 2 & 1 \\
1 & -2 & 1 \\
1 & 2 & -3
\end{array}\right)
$$

$\vec{w}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ has $V \vec{w}=\overrightarrow{0}$. So it is an eigenvector for $U V$
corresponding to $\lambda=0$.

Constructing and (some) classification of integer matrices with integer eigenvalues
LClassification Results
$\left\llcorner_{\text {Further refinements }}\right.$

Recall: $A=P D P^{-1}$ approach.
Idea 1. Make sure P has determinant ± 1.
How to construct such P ?

One technique [Ortega, 1984] uses:
Take $\vec{u}, \vec{v} \in \mathbb{R}^{n}$. Then $P=I_{n}+\vec{u} \otimes \vec{v}$ has det $P=1+\vec{u} \cdot \vec{v}$.

One technique [Ortega, 1984] uses:
Take $\vec{u}, \vec{v} \in \mathbb{R}^{n}$. Then $P=I_{n}+\vec{u} \otimes \vec{v}$ has det $P=1+\vec{u} \cdot \vec{v}$.

So choose $\vec{u} \perp \vec{v}$. Then $P=I_{n}+\vec{u} \otimes \vec{v}$ has $\operatorname{det} P=1$

One technique [Ortega, 1984] uses:
Take $\vec{u}, \vec{v} \in \mathbb{R}^{n}$. Then $P=I_{n}+\vec{u} \otimes \vec{v}$ has det $P=1+\vec{u} \cdot \vec{v}$.

So choose $\vec{u} \perp \vec{v}$. Then $P=I_{n}+\vec{u} \otimes \vec{v}$ has $\operatorname{det} P=1$ and $P^{-1}=I_{n}-\vec{u} \otimes \vec{v}$.

One technique [Ortega, 1984] uses:
Take $\vec{u}, \vec{v} \in \mathbb{R}^{n}$. Then $P=I_{n}+\vec{u} \otimes \vec{v}$ has det $P=1+\vec{u} \cdot \vec{v}$.

So choose $\vec{u} \perp \vec{v}$. Then $P=I_{n}+\vec{u} \otimes \vec{v}$ has $\operatorname{det} P=1$ and $P^{-1}=I_{n}-\vec{u} \otimes \vec{v}$.

This is just a special case of what we have been doing with the Folk Theorem and the Shift Propostion.
-Further refinements
Example. Try $\vec{u}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$

Example. Try $\vec{u}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$ and $\vec{v}=\left(\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right) \cdot($ Check: $\vec{u} \cdot \vec{v}=0$.

Example. Try $\vec{u}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$ and $\vec{v}=\left(\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right) .($ Check: $\vec{u} \cdot \vec{v}=0$.)
Then

$$
\vec{u} \otimes \vec{v}=\left(\begin{array}{lll}
-2 & -1 & 1 \\
-4 & -2 & 2 \\
-8 & -4 & 4
\end{array}\right)
$$

Example. Try $\vec{u}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$ and $\vec{v}=\left(\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right) .($ Check: $\vec{u} \cdot \vec{v}=0$.)
Then

$$
\vec{u} \otimes \vec{v}=\left(\begin{array}{lll}
-2 & -1 & 1 \\
-4 & -2 & 2 \\
-8 & -4 & 4
\end{array}\right)
$$

Get

$$
P=I+\vec{u} \otimes \vec{v}=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
-4 & -1 & 2 \\
-8 & -4 & 5
\end{array}\right) .
$$

and

$$
P^{-1}=I-\vec{u} \otimes \vec{v}=\left(\begin{array}{lll}
3 & 1 & -1 \\
4 & 3 & -2 \\
8 & 4 & -3
\end{array}\right) .
$$

So Ortega uses this to say that any $A=P D P^{-1}$ will be an IMIE.

So Ortega uses this to say that any $A=P D P^{-1}$ will be an IMIE.
But in fact, P itself is an IMIE. It has the single eigenvalue 1.
P is clearly non-diagonalizable.

$$
\left(\begin{array}{lll}
-1 & -1 & 1 \\
-4 & -1 & 2 \\
-8 & -4 & 5
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
$$

Ortega's full result is that if $\vec{u} \cdot \vec{v}=\beta$ then $P=I_{n}+\vec{u} \otimes \vec{v}$ has $\operatorname{det} P=1+\beta$ and (if $\beta \neq-1$) then $P^{-1}=I_{n}-\frac{1}{1+\beta} \vec{u} \otimes \vec{v}$.

The case $\beta=-2$ is interesting.

Earlier we had

$$
U V=\binom{2}{1}\left(\begin{array}{ll}
1 & -4
\end{array}\right)=\left(\begin{array}{ll}
2 & -8 \\
1 & -4
\end{array}\right)
$$

with $\lambda=-2,0$

Earlier we had

$$
U V=\binom{2}{1}\left(\begin{array}{ll}
1 & -4
\end{array}\right)=\left(\begin{array}{ll}
2 & -8 \\
1 & -4
\end{array}\right)
$$

with $\lambda=-2,0$
So

$$
Q=U V+I=\left(\begin{array}{ll}
3 & -8 \\
1 & -3
\end{array}\right)
$$

has eigenvalues $\lambda=-1,1$.
In fact, this Q is coming from Ortega's construction. So $Q^{-1}=Q$.

Constructing and (some) classification of integer matrices with integer eigenvalues
LClassification Results
$\left\llcorner_{\text {Further refinements }}\right.$

目 Christopher Towse and Eric Campbell．Constructing integer matrices with integer eigenvalues．The Math．Scientist 41（2）： 45－52， 2016.

國 W．P．Galvin．，The Teaching of Mathematics：Matrices with ＂Custom－Built＂Eigenspaces．Amer．Math．Monthly，91（5）： 308－309， 1984.

比 Greg Martin and Erick Wong．Almost all integer matrices have no integer eigenvalues．Amer．Math．Monthly，116（7）： 588－597， 2009.
－James M．Ortega．Comment on：＂Matrices with integer entries and integer eigenvalues＂．Amer．Math．Monthly，92（7）： 526， 1985.

R J．－C．Renaud．Matrices with integer entries and integer eigenvalues．Amer．Math．Monthly，90（3）：202－203， 1983.

