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The question

An example

Solve a linear system:
x′(t) = Ax

Answer:

x = C1v1e
λ1t + C2v2e

λ2t + · · ·+ Cnvne
λnt

... or something similar.
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An example:

A =

2 2 1
1 3 1
1 2 2



Eigenvalues are λ = 1, 1, 5.

So the characteristic polynomial is χA(x) = x3 − 7x2 + 11x − 5.

Reasonable?
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Such an A will be a good example.

Note: Martin and Wong, ”Almost all integer matrices have no
integer eigenvalues”
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Constructing and (some) classification of integer matrices with integer eigenvalues

Set-up

Recall/notation:

A = PDP−1

where

P =

 | | · · · |
~u1 ~u2 · · · ~un
| | · · · |


has columns which form a basis of eigenvectors for A and
D = 〈λ1, λ2, . . . , λn〉 is the diagonal matrix with corresponding
eigenvalues on the diagonal.
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Set-up

Our example:

A =

2 2 1
1 3 1
1 2 2


D = 〈1, 1, 5〉

And in this case,

P =

−2 −1 1
1 0 1
0 1 1



A = PDP−1.
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First approach

Failure

Idea: With the same P, try PDP−1 for D = 〈1, 3, 5〉.

Then

P

1 0 0
0 3 0
0 0 5

P−1 =

5/2 3 −1/2
1 3 1

1/2 1 7/2


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First approach

Failure

The problem is that

P−1 = (1/4)

−1 2 −1
−1 −2 3
1 2 1



=
1

detP
Padj

Or, really, that detP = 4.
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1. Choose P with detP = ±1. (New problem!)

2. If k = detP, choose eigenvalues that are all multiples of k .
(But probably avoid 0.)
But actually ...
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First approach

Improvement: modulo k

Proposition (Eigenvalues congruent to b modulo k)

Let P be an n × n invertible matrix with k = detP 6= 0. Suppose
every λi ≡ b mod k. (So all the λi ’s are congruent to each
other.) Then A = P〈λ1, . . . , λn〉P−1 is integral.

For example,

P〈1,−3, 5〉P−1 =

1 0 4
1 3 1
2 4 −1


which has χ(x) = x3 − 3x2 − 13x + 15 = (x − 1)(x + 3)(x − 5).

Good?



Constructing and (some) classification of integer matrices with integer eigenvalues

First approach

Improvement: modulo k

Proposition (Eigenvalues congruent to b modulo k)

Let P be an n × n invertible matrix with k = detP 6= 0. Suppose
every λi ≡ b mod k. (So all the λi ’s are congruent to each
other.) Then A = P〈λ1, . . . , λn〉P−1 is integral.

For example,

P〈1,−3, 5〉P−1 =

1 0 4
1 3 1
2 4 −1



which has χ(x) = x3 − 3x2 − 13x + 15 = (x − 1)(x + 3)(x − 5).

Good?



Constructing and (some) classification of integer matrices with integer eigenvalues

First approach

Improvement: modulo k

Proposition (Eigenvalues congruent to b modulo k)

Let P be an n × n invertible matrix with k = detP 6= 0. Suppose
every λi ≡ b mod k. (So all the λi ’s are congruent to each
other.) Then A = P〈λ1, . . . , λn〉P−1 is integral.

For example,

P〈1,−3, 5〉P−1 =

1 0 4
1 3 1
2 4 −1


which has χ(x) = x3 − 3x2 − 13x + 15 = (x − 1)(x + 3)(x − 5).

Good?



Constructing and (some) classification of integer matrices with integer eigenvalues

First approach

Improvement: modulo k

Proposition (Eigenvalues congruent to b modulo k)

Let P be an n × n invertible matrix with k = detP 6= 0. Suppose
every λi ≡ b mod k. (So all the λi ’s are congruent to each
other.) Then A = P〈λ1, . . . , λn〉P−1 is integral.

For example,

P〈1,−3, 5〉P−1 =

1 0 4
1 3 1
2 4 −1


which has χ(x) = x3 − 3x2 − 13x + 15 = (x − 1)(x + 3)(x − 5).

Good?



Constructing and (some) classification of integer matrices with integer eigenvalues

First approach

Improvement: modulo k

Eric Campbell (Pomona) created a web app

http://ericthewry.github.io/integer matrices/

Input: eigenvectors (really P)
Select good eigenvalues
Output: IMIE and its characteristic polynomial



Constructing and (some) classification of integer matrices with integer eigenvalues

First approach

Improvement: modulo k

Eric Campbell (Pomona) created a web app

http://ericthewry.github.io/integer matrices/

Input: eigenvectors (really P)
Select good eigenvalues
Output: IMIE and its characteristic polynomial



Constructing and (some) classification of integer matrices with integer eigenvalues

First approach

Improvement: modulo k

Eric Campbell (Pomona) created a web app

http://ericthewry.github.io/integer matrices/

Input: eigenvectors (really P)
Select good eigenvalues
Output: IMIE and its characteristic polynomial



Constructing and (some) classification of integer matrices with integer eigenvalues

A different approach



Constructing and (some) classification of integer matrices with integer eigenvalues

A different approach

A useful property

Proposition

If X is invertible than XY and YX have the same characteristic
polynomials.

Idea [Renaud, 1983]: Take X ,Y integer matrices. If YX is upper
(or lower) triangular then the eigenvalues are the diagonal
elements, hence integers. So XY will be a good example.

If X and Y are n × n, we are imposing n(n − 1)/2 othogonality
conditions on the rows of Y and columns of X .
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A different approach

A useful property

Let X =

(
1 2
−3 2

)
and Y =

(
1 2
3 1

)
.

Then XY =

(
7 4
3 −4

)
has the same eigenvalues as

YX =

(
−5 ∗
0 8

)
, namely λ = −5, 8.

Starting with X , the only condition on Y is that the second row of
Y must be orthogonal to the first row of X .
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A better version

Better fact:

Theorem (Folk Theorem)

Let U be an r × s matrix and V be an s × r matrix, where r ≤ s.
Then χUV (x) = x s−rχVU(x).

Proof idea (due to Horn and Johnson):(
UV 0
V 0

)
∼
(

0 0
V VU

)
via

(
Ir U
0 Is

)
.
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Constructing and (some) classification of integer matrices with integer eigenvalues

A different approach

A better version

In other words, UV and VU have nearly the same characteristic
polynomials and nearly the same eigenvalues.

The only difference: 0 is a eigenvalue of the larger matrix, repeated
as necessary.

For now, let us take U to be n × (n − 1) and V to be (n − 1)× n.
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A different approach

A better version

An example. Begin with

U =


1 2 −3
0 1 2
1 2 1
0 −2 2



V =

 1 −2 1 1
−1 −1 1 1
1 2 −1 1





Constructing and (some) classification of integer matrices with integer eigenvalues

A different approach

A better version

Then

VU =

2 0 −4
0 −3 4
0 0 2



with eigenvalues λ = 2,−3, 2
and

UV =


−4 −10 6 0
1 3 −1 3
0 −2 2 4
4 6 −4 0

 .

So UV is an integer matrix with eigenvalues λ = 2,−3, 2 and
λ = 0.
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A different approach

A better version

Writing

U =

 | | |
~u1 ~u2 ~u3

| | |



V =

− ~v1 −
− ~v2 −
− ~v3 −



We needed ~v2 · ~u1 = ~v3 · ~u1 = ~v3 · ~u2 = 0.
Then the eigenvalues of UV are the three dot products ~vi · ~ui and 0.
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Constructing and (some) classification of integer matrices with integer eigenvalues

A different approach

A better version

Note: we now only need an (n − 1)× (n − 1) matrix to be
triangular. There are now (n − 1)(n − 2)/2 orthogonality
conditions.

This means there are no conditions to be checked in order to
construct a 2× 2 example.
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A different approach

A better version

Any (
u1

u2

)(
v1 v2

)
=

(
u1v1 u1v2

u2v1 u2v2

)
is an integer matrix with eigenvalues 0 and u1v1 + u2v2.

E.g. (
2
1

)(
1 −4

)
=

(
2 −8
1 −4

)
λ = −2, 0
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A different approach

A better version

Disadvantages:
• We always get 0 as an eigenvalue.
• What are the eigenvectors?
Advantage:
• This is (nearly) a complete characterization for these matrices.
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A different approach

A shift by b

Great tool No. 2:

Proposition (Shift Proposition)

If A has eigenvalues λ1, . . . , λn.

Then A + bIn has eigenvalues b + λ1, . . . , b + λn .

Why does this work? Note that A and A + bI have the same
eigenvectors.
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A different approach

A shift by b

Example:

VU =

2 0 −4
0 −3 4
0 0 2

 so UV =


−4 −10 6 0
1 3 −1 3
0 −2 2 4
4 6 −4 0

 .

has eigenvalues 2,−3, 2, 0.

So

A = UV − I =


−5 −10 6 0
1 2 −1 3
0 −2 1 4
4 6 −4 −1


has eigenvalues 1,−4, 1,−1.
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A different approach

A shift by b

Earlier we had

UV =

(
2
1

)(
1 −4

)
=

(
2 −8
1 −4

)
with λ = −2, 0

So

UV + I =

(
3 −8
1 −3

)
has eigenvalues λ = −1, 1.
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A different approach

A shift by b

Earlier we had

UV =

(
2
1

)(
1 −4

)
=

(
2 −8
1 −4

)
with λ = −2, 0
So

UV + I =

(
3 −8
1 −3

)
has eigenvalues λ = −1, 1.
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A different approach

A shift by b

Note: This gives a quick proof to our Eigenvalues Congruent to b
modulo k Proposition.
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This is actually a classification of all IMIEs.

Theorem (Renaud)

Every n × n integer matrix with integer eigenvalues can be written
as a UV + bIn where VU is a triangular (n − 1)× (n − 1) matrix.

Note: U is n × (n − 1) and V is (n − 1)× n.
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Classification Results

Further refinements

Is there any way to take further advantage of the Folk Theorem?

What if U is n × r and V is r × n?

In particular, if U is n × 1 and V is 1× n then VU is trivially
triangular.
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Classification Results

Further refinements

Take U =

1
1
1

 and V =
(
1 2 1

)
.

Then VU = (4) and UV must be a 3× 3 integer matrix with
eigenvalues 4, 0, 0.

In fact UV + I3 =

2 2 1
1 3 1
1 2 2

 = A, our original example.
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What about the eigenvectors of UV ?

Suppose VU is not just triangular, but diagonal.

Then the (n − 1) columns of U are eigenvectors corresponding to
the λ1, . . . , λn−1.
Any vector, ~w in the null space of V is an eigenvector
corresponding to b.



Constructing and (some) classification of integer matrices with integer eigenvalues

Classification Results

Further refinements

What about the eigenvectors of UV ?
Suppose VU is not just triangular, but diagonal.

Then the (n − 1) columns of U are eigenvectors corresponding to
the λ1, . . . , λn−1.
Any vector, ~w in the null space of V is an eigenvector
corresponding to b.



Constructing and (some) classification of integer matrices with integer eigenvalues

Classification Results

Further refinements

What about the eigenvectors of UV ?
Suppose VU is not just triangular, but diagonal.

Then the (n − 1) columns of U are eigenvectors corresponding to
the λ1, . . . , λn−1.

Any vector, ~w in the null space of V is an eigenvector
corresponding to b.



Constructing and (some) classification of integer matrices with integer eigenvalues

Classification Results

Further refinements

What about the eigenvectors of UV ?
Suppose VU is not just triangular, but diagonal.

Then the (n − 1) columns of U are eigenvectors corresponding to
the λ1, . . . , λn−1.
Any vector, ~w in the null space of V is an eigenvector
corresponding to b.



Constructing and (some) classification of integer matrices with integer eigenvalues

Classification Results

Further refinements

Example. U =

−3 −2
1 0
1 2

 and V =

(
1 −2 1
0 1 −1

)
.

Then VU =

(
−4 0
0 −2

)
, diagonal.

So the columns of U are eigenvectors (corresponding to
λ = −4,−2, resp.) of

UV =

−3 2 1
1 −2 1
1 2 −3

 .

~w =

1
1
1

 has V ~w = ~0. So it is an eigenvector for UV

corresponding to λ = 0.
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Recall: A = PDP−1 approach.

Idea 1. Make sure P has determinant ±1.

How to construct such P?
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One technique [Ortega, 1984] uses:
Take ~u, ~v ∈ Rn. Then P = In + ~u ⊗ ~v has detP = 1 + ~u · ~v .

So choose ~u ⊥ ~v . Then P = In + ~u ⊗ ~v has detP = 1
and P−1 = In − ~u ⊗ ~v .

This is just a special case of what we have been doing with the
Folk Theorem and the Shift Propostion.
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Example. Try ~u =

1
2
4



and ~v =

−2
−1
1

 . (Check: ~u · ~v = 0.)

Then

~u ⊗ ~v =

−2 −1 1
−4 −2 2
−8 −4 4


Get

P = I + ~u ⊗ ~v =

−1 −1 1
−4 −1 2
−8 −4 5

 .

and

P−1 = I − ~u ⊗ ~v =

3 1 −1
4 3 −2
8 4 −3

 .
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So Ortega uses this to say that any A = PDP−1 will be an IMIE.

But in fact, P itself is an IMIE. It has the single eigenvalue 1.

P is clearly non-diagonalizable.−1 −1 1
−4 −1 2
−8 −4 5

 ∼
1 0 0

0 1 1
0 0 1

 .
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Ortega’s full result is that if ~u · ~v = β then P = In + ~u ⊗ ~v has
detP = 1 + β and (if β 6= −1) then P−1 = In − 1

1+β ~u ⊗ ~v .

The case β = −2 is interesting.
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Earlier we had

UV =

(
2
1

)(
1 −4

)
=

(
2 −8
1 −4

)
with λ = −2, 0

So

Q = UV + I =

(
3 −8
1 −3

)
has eigenvalues λ = −1, 1.
In fact, this Q is coming from Ortega’s construction. So Q−1 = Q.
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