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Kleene algebras with tests (KATs) o�er sound, complete, and decidable equational reasoning about regularly
structured programs. Since NetKAT demonstrated how well various extensions of KATs apply to computer
networks, interest in KATs has increased greatly. Unfortunately, extending a KAT to a particular domain by
adding custom primitives, proving its equational theory sound and complete, and coming up with e�cient
automata-theoretic implementations is still an expert’s task.

We present a general framework for deriving KATs we call Kleene algebra modulo theories: given primitives
and notions of state, we can automatically derive a corresponding KAT’s semantics, prove its equational theory
sound and complete, and generate an automata-based implementation of equivalence checking. Our framework
is based on pushback, a way of specifying how predicates and actions interact, �rst used in Temporal NetKAT.
We o�er several case studies, including theories for bitvectors, increasing natural numbers, unbounded sets
and maps, temporal logic, and network protocols. Finally, we provide an OCaml implementation that closely
matches the theory: with only a few declarations, users can automatically derive an automata-theoretic
decision procedure for a KAT.

1 INTRODUCTION
Kleene algebras with tests (KATs) provide a powerful framework for reasoning about regularly
structured programs. Able to model abstractions of programs with while loops, KATs can handle
a variety of analysis tasks [3, 7, 11–13, 34] and typically enjoy sound, complete, and decidable
equational theories. Interest in KATs has increased recently as they have been applied to the
domain of computer networks. NetKAT, a language for programming and verifying Software
De�ned Networks (SDNs), was the �rst [1], followed by many variations and extensions [5, 8, 22,
35, 37, 46]. However, extending a KAT remains a challenging task, requiring experts familiar with
KATs and their metatheory to craft custom domain primitives, derive a collection of new domain-
speci�c axioms, prove the soundness and completeness of the resulting algebra, and implement a
decision procedure. Our goal in this paper is to democratize KATs, o�ering a general framework
for automatically deriving sound, complete, and decidable KATs for client theories. Our theoretical
framework corresponds closely to an OCaml implementation, which derives a KAT with a decision
procedure from small modules specifying theories.

What is a KAT?. From a bird’s-eye view, a Kleene algebra with tests is a �rst-order language
with loops (the Kleene algebra) and interesting decision making (the tests). More formally, a KAT
consists of two parts: a Kleene algebra 〈0, 1,+, ·, ∗〉 of “actions” with an embedded Boolean algebra
〈0, 1,+, ·,¬〉 of “predicates”. KATs are useful for representing propositional programs with while
loops: we use · as sequential composition, + as branching (a/k/a parallel composition), and ∗ for
iteration. For example, if α and β are predicates and π and ρ are actions, then the KAT term
α · π + ¬α(β · ρ)∗ · ¬β · π de�nes a program denoting two kinds of traces: either α holds and we
simply run π , or α doesn’t hold, and we run ρ until β no longer holds and then run π . Translating
the KAT term into a While program, we write: if α then π else { while β do { ρ } ; π }.
Reasoning in KAT is purely propositional, and the actions and tests are opaque. We know nothing
about α , β , π , or ρ, or how they might interact. For example, π might be the assignment i := i + 1
and ρ might be the test i > 100. Clearly these ought to be related—the action π can a�ect the
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truth of ρ. To allow for reasoning with respect to a particular domain (e.g., the domain of natural
numbers with addition and comparison), one typically must extend KAT with additional axioms
that capture the domain-speci�c behavior [1, 5, 8, 29, 33].

As an example, NetKAT showed how packet forwarding in computer networks can be modeled
as simple While programs. Devices in a network must drop or permit packets (tests), update packets
by modifying their �elds (actions), and iteratively pass packets to and from other devices (loops).
NetKAT extends KAT with two actions and one predicate: an action to write to packet �elds, f ← v ,
where we write valuev to �eld f of the current packet; an action dup, which records a packet in the
history; and a �eld matching predicate, f = v , which determines whether the �eld f of the current
packet is set to the value v . Each NetKAT program is denoted as a function from a packet history
to a set of packet histories. For example, the program dstIP← 192.168.0.1 · dstPort← 4747 · dup
takes a packet history as input, updates the topmost packet to have a new destination IP address
and port, and then saves the current packet state. The NetKAT paper goes on to explicitly restate
the KAT equational theory along with custom equations for the new primitive forms, prove the
theory’s soundness, and then devise a novel normal form to reduce NetKAT to an existing KAT
with a known completeness result. Later papers [21, 50] then developed the NetKAT automata
theory used to compile of NetKAT programs into forwarding tables and to verify existing networks.

We aim to make it easier to de�ne new KATs. Our theoretical framework and its corresponding
implementation allow for quick and easy derivation of sound and complete KATs with automata-
theoretic decision procedures when given arbitrary domain-speci�c theories.

How do we build our KATs? Our framework for deriving Kleene algebras with tests requires, at
a minimum, custom predicates and actions along with a description of how these apply to some
notion of state. We call these parts the client theory, and we call the client theory’s predicates and
actions “primitive”, as opposed to those built with the KAT’s composition operators. We call the
resulting KAT a Kleene algebra modulo theory (KMT). Deriving a trace-based semantics for the
KMT and proving it sound isn’t particularly hard—it amounts to “turning the crank”. Proving the
KMT is complete and decidable, however, can be much harder.

Our framework hinges on an operation relating predicates and operations called pushback, �rst
used to prove relative completeness for Temporal NetKAT [8]. Given a primitive action π and a
primitive predicate α , the pushback operation tells us how to go from π · α to some set of terms:∑n

i=0 αi · π = α0 · π + α1 · π + . . . . That is, the client theory must be able to take any of its primitive
tests and “push it back” through any of its primitive actions. Pushback allows us to take an arbitrary
term and normalize into a form where all of the predicates appear only at the front of the term, a
convenient representation both for our completeness proof (Section 3.4) and our automata-theoretic
implementation (Sections 5 and 6).

The quid pro quo. Our method takes a client theory T of custom primitive predicates and actions;
from the client theory we generate a KMT, T ∗, on top of T . Depending on what we know about T ,
we can prove a variety of properties of T ∗; in dependency order:

(1) As a baseline, we need a notion of state and a way to assign meaning to primitive operations;
we can then de�ne a semantics for T ∗ that denotes each term as a function from a trace of
states to a set of traces of states and a log of actions (Section 3.1).

(2) Our resulting semantics is sound as a KAT, with sound client equations added to account
for primitives (Section 3.2; Theorem 3.1).

(3) If the client theory can de�ne an appropriate pushback operation, we can de�ne a normal-
ization procedure for T ∗ (Section 3.3).
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(4) IfT is deductively complete, can decide satis�ability of predicates, and satis�es the pushback
requirements, then the equational theory for T ∗ is complete and decidable given the
trace-based interpretation of actions (Section 3.4; Theorem 3.8), and we can derive both
an automata-theoretic model of T ∗, and an implementation in OCaml that can decide
equivalence of terms in T ∗ (Sections 5 and 6).

What are our contributions?
• A new framework for de�ning KATs and proving their metatheory, with a novel, explicit

development of the normalization procedure used in completeness (Section 3).
• Several case studies of this framework (Section 4), including a strengthening of Temporal

NetKAT’s completeness result, theories for unbounded state (naturals, sets, and maps), and
distributed routing protocols.
• An automata theoretic account of our proof technique, which can inform compilation strategies

for, e.g., NetKAT and enable equivalence checking (Section 5).
• An implementation of our framework (Section 6) which follows the proofs directly, automati-

cally deriving automata-theoretic decision procedures for client theories.
Finally, our framework o�ers a new way in to those looking to work with KATs. Researchers
familiar with inductive relations from, e.g., type theory and semantics, will �nd a familiar friend in
our generalization of the pushback operation—we de�ne it as an inductive relation.

2 MOTIVATION AND INTUITION
Before getting into the technical details, we o�er an overview of how KATs are used (Section 2.1),
what kinds of KMTs we can de�ne (Section 2.2), and an extended networking example (Section 2.3).

2.1 Modeling While programs
Historically, KAT has been used to model the behavior of simple While programs. The Kleene
star operator (p∗) captures the iterative behavior of while loops, and tests model conditionals in
if statements and loop guards. For example, consider the program Pnat (Figure 1a), a short loop
over two natural-valued variables. To model such a program in KAT, one replaces each concrete
test or action with an abstract representation. Let the atomic test α represent the test i < 50, β
represent i < 100, and γ represent j > 100; the atomic actions p and q represent the assignments
i := i + 1 and j := j + 2, respectively. We can now write the program as the KAT expression
α · (β · p · q)∗ · ¬β · γ . The complete equational theory of KAT makes it possible to reason about
program transformations and decide equivalence between KAT terms. For example, KAT’s theory
can prove that the original loop is equivalent to its unfolding, i.e.:

α · (β · p · q)∗ · ¬β · γ ≡ α · (1 + β · p · q) · (β · p · q · β · p · q)∗ · ¬β · γ
Unfortunately, KATs are naïvely propositional: the algebra understands nothing of the underlying
domain or the semantics of the abstract predicates and actions. For example, the fact that (j :=
j + 2 · j > 200) ≡ (j > 198 · j := j + 2) does not follow from the KAT axioms—to reason using this
equivalence, we must add it as an equational assumption. Reasoning about the particular values of
the variable i over time in Pnat demands some number of relevant equational assumptions.

While purely abstract reasoning with KAT can often work for particular programs, it requires
that we know exactly which equational assumptions we need on a per-program basis. Yet the ability
to reason about the equivalence of programs in the presence of particular domains (such as the
domain of natural numbers with addition and comparison) is important in order to model many real
programs and domain-speci�c languages. Can we come up with theories that allow us to reason
in a general way, and not per-program? Yes: we can build our own KAT, adding domain-speci�c

, Vol. 1, No. 1, Article 1. Publication date: July 2017.



1:4 Ryan Becke�, Eric Campell, and Michael Greenberg

assume i < 50
while (i < 100) do

i := i + 1
j := j + 2

end
assert j > 100

assume 0 ≤ j < 4
while (i < 10) do
i := i + 1
j := (j << 1) + 3
if i < 5 then
insert(X, j)

end
assert in(X, 9)

i := 0
parity := false

while (true) do
odd[i] := parity

i := i + 1
parity := !parity

end
assert odd[99]

(a) Pnat (b) Pset (c) Pmap

Fig. 1. Example simple while programs.

equational rules for our actions. Such an approach is taken by NetKAT [1], which adds the “packet
axioms” for reasoning about packets as they move through the network. Since NetKAT’s equational
theory has these packet axioms baked in, there’s no need for per-program reasoning. But NetKAT’s
generality comes at the cost of proving its metatheory and developing an implementation—a high
barrier to entry for those hoping to adapt KAT to their needs.

Our framework for Kleene algebras modulo theories (KMTs) allow us to derive metatheory and
implementation for KATs based on a given theory. KMTs o�er the best of both worlds: obviating both
per-program reasoning and the need to deeply understand KAT metatheory and implementation.

2.2 Building new theories
We o�er some cartoons of KMTs here; see Section 4 for technical details.

We can model the program Pnat (Figure 1a) by introducing a new client theory with actions
x := n and x := x + 1 and a new test x > n for some collection of variables x and natural number
constants n. For this theory we can add axioms like the following (where x , y):

(x := n) · (x > m) ≡ (n > m) · (x := n)
(x := x + 1) · (y > n) ≡ (y > n) · (x := x + 1)
(x := x + 1) · (x > n) ≡ (x > n − 1) · (x := x + 1)

To derive completeness and decidability for the resulting KAT, the client must know how to take
one of their primitive actions π (here, either x := n or x := x + 1) and any primitive predicate α
(here, just x > n) and take π · α and push the test back, yielding an equivalent term b · π , such that
π · α ≡ b · π and b is in some sense no larger than α . The client’s pushback operation is a critical
component of our metatheory. Here, the last axiom shows how to push back a comparison test
through an increment action and generate predicates that do not grow in size: x > n−1 is a “smaller”
test than x > n. Given, say, a Presburger arithmetic decision procedure, we can automatically verify
properties, like the assertion j > 100 that appears in Pnat, for programs with while loops.

Consider Pset (Figure 1b), a program de�ned over both naturals and a set data structure with two
operations: insertion and membership tests. The insertion action insert(x , j) inserts the value of
an expression (j) into a given set (x ); the membership test in(x , c) determines whether a constant
(c) is included in a given set (x ). An axiom characterizing pushback for this theory has the form:

insert(x , e) · in(x , c) ≡ (e = c) · insert(x , e)

Our theory of sets works for expressions e taken from another theory, so long as the underlying
theory supports tests of the form e = c . For example, this would work over the theory of naturals
since a test like j = 10 can be encoded as (j > 9) · ¬(j > 10).
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Finally, Pmap (Figure 1c) uses a combination of mutable boolean values and a map data structure.
Just as before, we can craft custom theories for reasoning about each of these types of state. For
booleans, we can add actions of the form b := true and b := false and tests of the form b = true
and b = false. The axioms are then simple equivalences like (b := true · b = false) ≡ 0 and
(b := true · b = true) ≡ (b := true). To model map data structures, we add actions of the form
X[e] := e and tests of the form X[c] = c . Just as with the set theory, the map theory is parameterized
over other theories, which can provide the type of keys and values—here, integers and booleans. In
Pmap, the odd map tracks whether certain natural numbers are odd or not by storing a boolean into
the map’s index. A sound axiom characterizing pushback in the theory of maps has the form:

(X[e1] := e2 · X[c1] = c2) ≡ (e1 = c1 · e2 = c2 + ¬(e1 = c1) · X[c1] = c2) · X[e1] := e2

Each of the theories we have described so far—naturals, sets, booleans, and maps—have tests
that only examine the current state of the program. However, we need not restrict ourselves in
this way. Primitive tests can make dynamic decisions or assertions based on any previous state of
the program. As an example, consider the theory of past-time, �nite-trace linear temporal logic
(LTLf ) [15, 16]. Linear temporal logic introduces new operators such as: ©a (in the last state a), ♦a
(in some previous state a), and �a (in every state a); we use �nite-time LTL because �nite traces
are a reasonable model in most domains modeling programs. As a use of LTLf , we may want to
check for Pnat (Figure 1a) that, before the last state, the variable j was always less than or equal to
200. We can capture this with the test ©�(j ≤ 200). For LTLf , our axioms include equalities like
p · ©a ≡ a · p and �a ≡ a · ©�a. We can use these axioms to push tests back through actions; for
example, we can rewrite terms using these LTLf axioms alongside the natural number axioms:

j := j + 2 ·�(j ≤ 200) ≡ j := j + 2 · (j ≤ 200 · ©�(j ≤ 200))
≡ (j := j + 2 · j ≤ 200) · ©�(j ≤ 200)
≡ (j ≤ 198) · j := j + 2 · ©�(j ≤ 200)
≡ (j ≤ 198) ·�(j ≤ 200) · j := j + 2

Pushing the temporal test back through the action reveals that j is never greater than 200 if before
the action j was not greater than 198 in the previous state and j never exceeded 200 before the
action as well. The �nal pushed back test (j ≤ 198) ·�(j ≤ 200) satis�es the theory requirements
for pushback not yielding larger tests, since the resulting test is only in terms of the original test
and its subterms. Note that we’ve embedded our theory of naturals into LTLf : we can generate a
complete equational theory for LTLf over any other complete theory.

The ability to use temporal logic in KAT means that we can model check programs by phrasing
model checking questions in terms of program equivalence. For example, for some program r , we
can check if r ≡ r · ©�(j ≤ 200). In other words, if there exists some program trace that does not
satisfy the test, then it will be �ltered—resulting in non-equivalent terms. If the terms are equal,
then every trace from r satis�es the test. Similarly, we can test whether r · ©�(j ≤ 200) is empty—if
so, there are no satisfying traces.

Finally, we can encode NetKAT, a system that extends KAT with actions of the form f ← v , where
some value v is assigned to one of a �nite number of �elds f , and tests of the form f = v where
�eld f is tested for value v . It also includes a number of axioms such as f ← v · f = v ≡ f ← v .
The NetKAT axioms can be captured in our framework with minor changes. Further extending
NetKAT to Temporal NetKAT is captured trivially in our framework as an application of the LTLf
theory to NetKAT’s theory, deriving Beckett et al.’s [8] completeness result compositionally (in
fact, we can strengthen it—see Section 4.6).
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A := 0
B :=∞
C :=∞
D :=∞
while (true) do
B := min+(A, C, D)
C := min+(A, B, D)
D := min+(B, C)

end

A := (0, true)
B := (0, false)
C := (0, false)
D := (0, false)
while (true) do

updateB

updateC

updateD

end

(a) Sample network with policy on C (b) PSP, default policy (c) PBGP, local policies
Fig. 2. An example network and models of BGP routing.

2.3 A case study: network routing protocols
As a �nal example demonstrating the kinds of theories supported by KMT, we turn our attention
to modeling network routing protocols. While NetKAT uses Kleene algebra to de�ne simple,
stateless forwarding tables of networks, the most common network routing protocols are distributed
algorithms that actually compute paths in a network by passing messages between devices. As
an example the Border Gateway Protocol (BGP) [43], which allows users to de�ne rich routing
policy, has become the de facto internet routing protocol used to transport data between between
autonomous networks under the control of di�erent entities (e.g. Verizon, Comcast). However, the
combination of the distributed nature of BGP, the di�culty of writing policy per-device, and the
fact that network devices can and often do fail [27] all contribute to the fact that network outages
caused by BGP miscon�guration are common [2, 28, 30, 36, 39, 48, 52]. By encoding BGP policies
in our framework, it immediately follows that we can decide properties about networks running
BGP such as “will router A always be able to reach router B after at most 1 link failure".

Figure 2a shows an example network that is con�gured to run BGP. In BGP, devices exchange
messages between neighbors to determine routes to a destination. In the �gure, routerA is connected
to an end host (the line going to the left) and wants to tell other routers how to get to this destination.

In the default behavior of the BGP protocol, each router selects the shortest path among all
of its neighbors and then informs each of its neighbors about this route (with the path length
increased by one). In e�ect, the devices will compute the shortest paths through the network in
a distributed fashion. We can model shortest paths routing in a KMT using the theory of natural
numbers: in PSP (Figure 2b), each router maintains a distance to the destination. Since A knows
about the destination, it will start with a distance of 0, while all other routers start with distance∞.
Then, iteratively, each other router updates its distance to be 1 more than the minimum of each
of its peers, which is captured by the min+ operator. The behavior of min+ can be described by
pushback equivalences like:

B := min+(A,C,D) · B < 3 ≡ (A < 2 +C < 2 + D < 2) · B := min+(A,C,D)

BGP gets interesting when users go beyond shortest path routing and also de�ne router-local
policy. In our example network, router C is con�gured with local policy (Figure 2a): router C will
block messages received from D and will prioritize paths received from neighbor B over those from
A (using distance as a tie breaker). In order to accommodate this richer routing behavior, we must
extend our model to PBGP (Figure 2c). Now, each router is associated with a variable storing a tuple
of both the distance and whether or not the router has a path to the destination; we write C1 for
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Predicates T ∗pred
a,b ::= 0 additive identity

| 1 multiplicative identity
| ¬a negation
| a + b disjunction
| a · b conjunction
| α primitive predicates (Tα )

Actions
p,q ::= a embedded predicates

| p + q parallel composition
| p · q sequential composition
| p∗ Kleene star
| π primitive actions (Tπ )

Fig. 3. Generalized KAT syntax (client parts highlighted)

the “does C have a path” boolean and C0 for the length of that path, if it exists. We can then create
a separate update action for each device in the network to re�ect the semantics of the device’s local
policy (updateC, etc.). Further, suppose we have a boolean variable failX ,Y for each link between
routers X and Y indicating whether or not the link is failed. The update action for router C’s local
policy can be captured with the following type of equivalence:

updateC ·C0 < 3 ≡ (¬failA,C · (¬B1 + failB,C ) · A1 · (A0 < 2) + ¬failB,C · B1 · (B0 < 2)) · updateC

In order for router C to have a path length < 3 to the destination after applying the local update
function, it must have either been the case that B did not have a route to the destination (or the
B-C link is down) and A had a route with length < 2 and the A-C link is not down, or B had a
route with length < 2 and the B-C link is not down. Similarly, we would need an axiom to capture
when router C will have a path to the destination based on equivalences like: updateC · C1 ≡
(A1 · ¬failA,C + B1 · ¬failB,C ) · updateC—C has a path to the destination if any of its neighbors
has a path to the destination and the corresponding link is not failed.

It is now possible to ask questions such as “if there is any single network link failure, will C ever
have a path with length greater than 2?”. Assuming the network program is encoded as ρ, we can
answer this question by checking language non-emptiness for

(failA,C · ¬failB,C + ¬failA,C · failB,C ) · ρ · (C0 > 2) ≡ 0

While we have in a sense come back to a per-program world—PBGP requires de�nitions and axioms
for each router’s local policy—we can reason in a very complex domain.

3 LIFTING PUSHBACK TO SOUNDNESS AND COMPLETENESS
This section details the structure of our framework for de�ning a KAT in terms of a client the-
ory. While we have striven to make this section accessible to readers without much familiarity
with KATs, those completely new to KATs may do well to skip directly to our case studies (Sec-
tion 4). Throughout this paper, we mark those parts which must be provided by the client by
highlighting them in marmalade.

We derive a KAT T ∗ (Figure 3) on top of a client theory T where T has two fundamental
parts—predicates α ∈ Tα and actions π ∈ Tπ . We refer to the Boolean algebra over the client theory
as T ∗pred ⊆ T

∗.
We can provide results for T ∗ in a pay-as-you-go fashion: given a model for the predicates and

actions of T , we derive a trace semantics for T ∗ (Section 3.1); if T has a sound equational theory
with respect to our semantics, so does T ∗ (Section 3.2); if T has a complete equational theory with
respect to our semantics, so does T ∗ (Section 3.4); and �nally, with just a few lines of code about
the structure of T , we can provide an automata-theoretic implementation of T ∗ (Section 5).
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The key to our general, parameterized proof is a novel pushback operation (Section 3.3.2): given
an understanding of how to push primitive predicates back to the front of a term, we can derive a
method for �nding normal forms for our completeness proof (Section 3.4).

3.1 Semantics
The �rst step in turning the client theory T into a KAT is to de�ne a semantics (Figure 4). We can
give any KAT a trace semantics: the meaning of a term is a trace t , which is a non-empty list of log
entries l . Each log entry records a state σ and (in all but the initial state) an action π . The client
assigns meaning to predicates and actions by de�ning a set of states State and two functions: one
to determine whether a predicate holds (pred) and another to determine an action’s e�ects (act). To
run a T ∗ term on a state σ , we start with an initial state 〈σ ,⊥〉; when we’re done, we’ll have a set
of traces of the form 〈σ0,⊥〉, 〈σ1,π1〉, . . . ,, where σi = act(πi ,σi−1) for i > 0. (A similar semantics
shows up in Kozen’s application of KAT to static analysis [32].)

The client’s pred function takes a primitive predicate α and a trace, returning true or false.
Predicates can examine the entire trace—no such predicates exist in NetKAT, but those in Temporal
NetKAT do. When the pred function returns true, we return the singleton set holding our input
trace; when pred returns false, we return the empty set. (Composite predicates follow this same
pattern, always returning either a singleton set holding their input trace or the empty set.) It’s
acceptable for the pred function to recursively call the denotational semantics, though we have
skipped the formal detail here. Such a feature is particularly useful for de�ning primitive predicates
that draw from, e.g., temporal logic (see Section 4.8).

The client’s act function takes a primitive action π and the last state in the trace, returning a new
state. Whatever new state comes out is recorded in the trace, along with the action just performed.

3.2 Soundness
Proving soundness is relatively straightforward: we only depend on the client’s act and pred
functions, and none of our KAT axioms (Figure 4) even mention the client’s primitives. We do need
to use several KAT theorems in our completeness proof (Figure 4, Consequences), the most complex
being star expansion (Star-Expand), which we take from Temporal NetKAT [8]. We believe the
pushback negation theorem (Pushback-Neg) is novel. Our soundness proof naturally enough
requires that any equations the client theory adds need to be sound in our trace semantics.

Theorem 3.1 (Soundness of T ∗). If T ’s equational reasoning is sound (p ≡T q ⇒ [[p]] = [[q]])
then T ∗’s equational reasoning is sound (p ≡ q ⇒ [[p]] = [[q]]).

Proof. By induction on the derivation of p ≡ q.1 �

3.3 Towards completeness: normalization via pushback
In order to prove completeness (Section 3.4), we reduce our KAT terms to a more manageable subset,
which we call normal forms. Normalization happens via a pushback operation to that translates
a term p into an equivalent term of the form

∑
ai ·mi where eachmi does not contain any tests

(De�nition 3.4). Once in this form, we can use the completeness result provided by the client theory
to reduce the completeness of our language to an existing result for Kleene algebras.

In order to use our general normalization procedure, the client theory T must de�ne two things:
(1) a way to extract subterms from predicates, to de�ne an ordering on predicates that serves

as the termination measure on normalization (Section 3.3.1); and

1Full proofs with all necessary lemmas are available in an extended version of this paper in the supplementary material.
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Trace de�nitions

σ ∈ State
l ∈ Log ::= 〈σ ,⊥〉 | 〈σ ,π 〉
t ∈ Trace = Log+

pred : Tα × Trace→ {true, false}
act : Tπ × State→ State

Trace semantics

[[−]] : T ∗ → Trace→ P(Trace)
[[0]](t) = ∅

[[1]](t) = {t}
[[α]](t) = {t | pred(α , t) = true}
[[¬a]](t) = {t | [[a]](t) = ∅}
[[π ]](t) = {t 〈σ ′,π 〉 | σ ′ = act(π , last(t))}

[[p + q]](t) = [[p]](t) ∪ [[q]](t)
[[p · q]](t) = ([[p]] • [[q]])(t)
[[p∗]](t) =

⋃
0≤i [[p]]

i (t)

(f • д)(t) =
⋃

t ′∈f (t ) д(t
′)

f 0(t) = {t}
f i+1(t) = (f • f i )(t)

last(. . . 〈σ , _〉) = σ

Kleene Algebra
p + (q + r ) ≡ (p + q) + r KA-Plus-Assoc

p + q ≡ q + p KA-Plus-Comm
p + 0 ≡ p KA-Plus-Zero
p + p ≡ p KA-Plus-Idem

p · (q · r ) ≡ (p · q) · r KA-Seq-Assoc
1 · p ≡ p KA-Seq-One
p · 1 ≡ p KA-One-Seq

p · (q + r ) ≡ p · q + p · r KA-Dist-L
(p + q) · r ≡ p · r + q · r KA-Dist-R

0 · p ≡ 0 KA-Zero-Seq
p · 0 ≡ 0 KA-Seq-Zero

1 + p · p∗ ≡ p∗ KA-Unroll-L
1 + p∗ · p ≡ p∗ KA-Unroll-R

q + p · r ≤ r → p∗ · q ≤ r KA-LFP-L
p + q · r ≤ q → p · r ∗ ≤ q KA-LFP-R

p ≤ q ⇔ p + q ≡ q

Boolean Algebra
a + (b · c) ≡ (a + b) · (a + c) BA-Plus-Dist

a + 1 ≡ 1 BA-Plus-One
a + ¬a ≡ 1 BA-Excl-Mid
a · b ≡ b · a BA-Seq-Comm
a · ¬a ≡ 0 BA-Contra
a · a ≡ a BA-Seq-Idem

Consequences
p · a ≡ b · p →

p · ¬a ≡ ¬b · p Pushback-Neg
p · (q · p)∗ ≡ (p · q)∗ · p Sliding
(p + q)∗ ≡ q∗ · (p · q∗)∗ Denesting

p · a ≡ a · q + r →
p∗ · a ≡ (a + p∗ · r ) · q∗ Star-Inv

p · a ≡ a · q + r →
p · a · (p · a)∗ ≡
(a · q + r ) · (q + r )∗ Star-Expand

Fig. 4. Semantics and equational theory for T ∗

(2) a way to push predicates back through actions, to de�ne the normalization procedure itself
(Section 3.3.2).

Once we’ve de�ned our normalization procedure, we can use it prove completeness (Section 3.4).

3.3.1 Maximal subterm ordering. Our normalization algorithm works by “pushing back” pred-
icates to the front of a term until we reach a normal form with all predicates at the front. For
example, we can normalize the term incx ∗ · ♦x > 1 (from LTLf over naturals) to:

(♦x > 1 + x > 1) · incx ∗ + x > 0 · incx · incx ∗ + 1 · incx · incx · incx ∗
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Sequenced tests and test of normal forms seqs : T ∗pred → P(T
∗
pred)

seqs : P(T ∗pred) → P(T
∗
pred) tests : T ∗nf → P(T

∗
pred)

seqs(a · b) = seqs(a) ∪ seqs(b)
seqs(a) = {a}

seqs(A) =
⋃

a∈A seqs(a)
tests(

∑
ai ·mi ) = {1} ∪ {ai }

Subterms sub : T ∗pred → P(T
∗
pred) subT : Tα → P(T ∗pred) sub : P(T ∗pred) → P(T

∗
pred)

sub(0) = {0}
sub(1) = {0, 1}
sub(α) = {0, 1,α } ∪ subT(α)

sub(¬a) = {0, 1} ∪ sub(a) ∪ {¬b | b ∈ sub(a)}
sub(a + b) = {a + b} ∪ sub(a) ∪ sub(b)
sub(a · b) = {a · b} ∪ sub(a) ∪ sub(b)

sub(A) =
⋃
a∈A

sub(a)

Maximal tests mt : P(T ∗pred) → P(T
∗
pred) mt : T ∗nf → P(T

∗
pred)

mt(A) = {b ∈ seqs(A) | ∀c ∈ seqs(A), c , b ⇒ b < sub(c)} mt(x) = mt(tests(x))

Maximal subterm ordering �,≺,≈ ⊆ T ∗nf × T
∗
nf

x � y ⇐⇒ sub(mt(x)) ⊆ sub(mt(y)) x ≺ y ⇐⇒ sub(mt(x)) ( sub(mt(y))

x ≈ y ⇐⇒ x � y ∧ y � x

Fig. 5. Maximal tests and the maximal subterm ordering

The pushback algorithm’s termination measure is a complex one. For example, pushing a predicate
back may not eliminate the predicate even though progress was made in getting predicates to the
front. More trickily, it may be that pushing test a back through π yields

∑
ai · π where each of the

ai is a copy of some subterm of a—and there may be many such copies!
To prove that our normalization algorithm is correct, we de�ne the maximal subterm ordering,

which serves as our termination measure. Let the set of restricted actions TRA be the subset of T ∗
where the only test is 1. We will use metavariablesm, n, and l to denote elements of TRA. Let the
set of normal forms TNF be a set of pairs of tests ai ∈ T ∗pred and restricted actions mi ∈ TRA. We will
use metavariables t , u, v , w , x , y, and z to denote elements of TNF; we typically write these sets not
in set notation, but as sums, i.e., x =

∑k
i=1 ai ·mi means x = {(a1,m1), (a2,m2), . . . , (ak ,mk )}. The

sum notation is convenient, but it is important that normal forms really be treated as sets—there
should be no duplicated terms in the sum. We write

∑
i ai to denote the normal form

∑
i ai · 1.

The set of normal forms, TNF, is closed over parallel composition by simply joining the sums. The
fundamental challenge in our normalization method is to de�ne sequential composition and Kleene
star on TNF.

The de�nitions for the maximal subterm ordering are complex (Figure 5), but the intuition is:
seqs gets all the tests out of a predicate; tests gets all the predicates out of a normal form; sub gets
subterms; mt gets “maximal” tests that cover a whole set of tests; we lift mt to work on normal
forms by extracting all possible tests; the relation x � y means that y’s maximal tests include all of
x ’s maximal tests. Maximal tests indicate which test to push back next in order to make progress
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towards normalization. For example, the subterms of ♦x > 1 are {♦x > 1,x > 1,x > 0, 1, 0}, which
represents the possible tests that might be generated pushing back ♦x > 1; the maximal tests of
♦x > 1 are just {♦x > 1}; the maximal tests of the set {♦x > 1,x > 0,y > 6} are {♦x > 1,y > 6}
since these tests are not subterms of any other test. Therefore, we can choose to push back either
of ♦x > 1 or y > 6 next and know that we will continue making progress towards normalization.

De�nition 3.2 (Well behaved subterms). The function subT is well behaved when it uses sub in a
structurally decreasing way and for all a ∈ T ∗pred when (1) if b ∈ subT(a) then sub(b) ⊆ subT(a) and
(2) if b ∈ subT(a), then either b ∈ {0, 1,a} or b precedes a in a global well ordering of predicates.

In most cases, it’s su�cient to use the size of terms as the well ordering, but as we develop
higher-order theories, we use a lexicographic ordering of “universe level” paired with term size.
Throughout the following, we assume that subT is well behaved.

We can take a normal form x and split it around a maximal test a ∈ mt(x) such that we have a
pair of normal forms: a · y + z, where both y and z are smaller than x in our ordering, because a (1)
appears at the front of y and (2) doesn’t appear in z at all.
Lemma 3.3 (Splitting). If a ∈ mt(x), then there exist y and z such that x ≡ a · y + z and y ≺ x

and z ≺ x .

Splitting is the key lemma for making progress pushing tests back, allowing us to take a normal
form and slowly push its maximal tests to the front; its proof follows from a chain of lemmas given
in the supplementary material.

3.3.2 Pushback. In order to de�ne normalization—necessary for completeness (Section 3.4)—the
client theory must have a pushback operation.
De�nition 3.4 (Pushback). Let the sets ΠT = {π ∈ T ∗} and AT = {α ∈ T

∗}. Then the pushback
operation of the client theory is a relation PB ⊆ ΠT × AT × P(T

∗
pred). We write the relation as

π · α PB
∑
ai · π and read it as “α pushes back through π to yield

∑
ai · π”. We require that if

π · α PB {a1, . . . ,ak }, then π · α ≡
∑k

i=1 ai · π , and ai � a.
Given the client theory’s PB relation, we de�ne a normalization procedure for T ∗ (Figure 6) by

extending the client’s PB relation (Figure 7). The PB relation need not be a function, nor do the the
ai need to be obviously related to α or π in any way.

The top-level normalization routine is de�ned by the p norm x relation (Figure 6), a syntax
directed relation that takes a term p and produces a normal form x =

∑
i aimi . Most syntactic forms

are easy to normalize: predicates are already normal forms (Pred); primitive actions π are normal
forms where there’s just one summand and the predicate is 1 (Act); and parallel composition of
two normal forms means just joining the sums (Par). But sequence and Kleene star are harder: we
de�ne judgments using PB to lift these operations to normal forms.

For sequences, we can recursively take p · q and normalize p into x =
∑
ai · mi and q into

y =
∑
bj · nj . But how can we combine x and y into a new normal form? We can concatenate and

rearrange the normal forms to get
∑

i, j ai ·mi · bj · nj . If we can push bj back throughmi to �nd
some new normal form

∑
ck · lk , then

∑
i, j,k ai · ck · lk ·nj is a normal form. We use the PBJ relation

(Figure 6), which joins two normal forms along the lines described here; we write x ·y PBJ z to mean
that the concatenation of x and y is equivalent to the normal form z—the · is merely suggestive
notation, as are other operators that appear on the left-hand side of the judgment schemata.

For Kleene star, we can take p∗ and normalize p into x =
∑
ai ·mi , but x∗ isn’t a normal form—we

need to somehow move all of the tests to the front. We do so with the PB∗ relation (Figure 6),
writing x∗ PB∗ y to mean that the Kleene star of x is equivalent to the normal form y—the ∗ is again
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Normalization p norm x

a norm a
Pred

π norm 1 · π
Act

p norm x q norm y

p + q norm x + y
Par

p norm x q norm y x · y PBJ z

p · q norm z
Seq

p norm x x∗ PB∗ y

p∗ norm y
Star

Sequential composition of normal forms x · y PBJ z

mi · bj PB• xi j
(
∑

i ai ·mi ) · (
∑

j bj · nj ) PB
J ∑

i
∑

j ai · xi j · nj
Join

Normalization of star x∗ PB∗ y

0∗ PB∗ 1
StarZero

x ≺ a x · a PBT y y∗ PB∗ y ′ y ′ · x PBJ z

(a · x)∗ PB∗ 1 + a · z
Slide

x ⊀ a x · a PBT a · t + u
(t + u)∗ PB∗ y y · x PBJ z

(a · x)∗ PB∗ 1 + a · z
Expand

a < mt(z) y . 0 y∗ PB∗ y ′

x · y ′ PBJ x ′ (a · x ′)∗ PB∗ z y ′ · z PBJ z ′

(a · x + y)∗ PB∗ z ′
Denest

Fig. 6. Normalization T ∗

just suggestive notation. The PB∗ relation is more subtle than PBJ. There are four possible ways to
treat x , based on how it factors via splitting (Lemma 3.3): if x = 0, then our work is trivial since
0∗ ≡ 1 (StarZero); if x splits into a ·x ′ where a is a maximal test and there are no other summands,
then we can either use the KAT sliding lemma to pull the test out when a is strictly the largest test
in x (Slide) or by using the KAT expansion lemma otherwise (Expand); if x splits into a · x ′ + z,
we use the KAT denesting lemma to pull a out before recurring on what remains (Denest).

The PBJ and PB∗ relations rely on others to do their work (Figure 7): the bulk of the work happens
in the PB• relation, which pushes a test back through a restricted action; PBR and PBT are wrappers
around PB• it for pushing tests back through normal forms and for pushing normal forms back
through restricted actions, respectively. We write m · a PB• y to mean that pushing the test a
back through restricted actionm yields the equivalent normal form y. The PB• relation works by
analyzing both the action and the test. The client theory’s PB relation is used in PB• when we try
to push a primitive predicate α through a primitive action π (Prim); all other KAT predicates can
be handled by rules matching on the action or predicate structure, deferring to other PB relations.
To handle negation, we de�ne a function nnf that takes a predicate and translates it to negation
normal form, where negations only appear on primitive predicates (Figure 7); the Pushback-Neg
theorem justi�es this case; we use nnf to guarantee that we obey the maximal subterm ordering.

To elucidate the way PB• handles structure, suppose we have the term (π1+π2) · (α1+α2). One of
two rules could apply: we could split up the tests and push them through individually (SeqParTest),
or we could split up the actions and push the tests through together (SeqParAction). It doesn’t
particularly matter which we do �rst: the next step will almost certainly be the other rule, and in
any case the results will be equivalent from the perspective of our equational theory. It could be
the case that choosing a one rule over another could give us a smaller term, which might yield a
more e�cient normalization procedure. Similarly, a given normal form may have more than one
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Pushback m · a PB• y m · x PBR y x · a PBT y

m · 0 PB• 0
SeqZero

m · 1 PB• 1 ·m
SeqOne

m · a PB• y y · b PBT z

m · (a · b) PB• z
SeqSeqTest

n · a PB• x m · x PBR y

(m · n) · a PB• y
SeqSeqAction

m · a PB• x m · b PB• y

m · (a + b) PB• x + y
SeqParTest

m · a PB• x n · a PB• y

(m + n) · a PB• x + y
SeqParAction

π · α PB {a1, . . . }

π · α PB•
∑

i ai · π
Prim

π · a PB•
∑

i ai · π nnf(¬(
∑

i ai )) = b

π · ¬a PB• b · π
PrimNeg

m · a PB• x x ≺ a
m∗ · x PBR y

m∗ · a PB• a + y
SeqStarSmaller

m · a PB• a · t + u m∗ · t PBR x
u∗ PB∗ y x · y PBJ z

m∗ · a PB• a · y + z
SeqStarInv

m · ai PB• xi
m ·

∑
i ai · ni PB

R ∑
i xi · ni

Restricted
mi · a PB•

∑
j bi j ·mi j

(
∑

i ai ·mi ) · a PBT ∑
i
∑

j ai · bi j ·mi j
Test

Negation normal form nnf : T ∗pred → T
∗
pred

nnf(0) = 0
nnf(1) = 1
nnf(α) = α

nnf(a + b) = nnf(a) + nnf(b)
nnf(a · b) = nnf(a) · nnf(b)

nnf(¬0) = 1
nnf(¬1) = 0
nnf(¬α) = ¬α

nnf(¬¬a) = nnf(a)
nnf(¬(a + b)) = nnf(¬a) · nnf(¬b)
nnf(¬(a · b)) = nnf(¬a) + nnf(¬b)

Fig. 7. Pushback for T ∗

maximal test—and therefore be splittable in more than one way (Lemma 3.3)—and it may be that
di�erent splits produce more or less e�cient terms. We haven’t yet studied di�ering strategies for
pushback, but see Sections 5 and 6 for discussion of our automata-theoretic implementation.

We show that our notion of pushback is correct in two steps. First we prove that pushback is
partially correct, i.e., if we can form a derivation in the pushback relations, the right-hand sides
are equivalent to the left-hand-sides (Theorem 3.5). Once we’ve established that our pushback
relations’ derivations mean what we want, we have to show that we can �nd such derivations; here
we use our maximal subterm measure to show that the recursive tangle of our PB relations always
terminates (Theorem 3.6) .

Theorem 3.5 (Pushback soundness). For each of the PB relations, the left side is equivalent to
the right side, e.g., if x∗ PB∗ y then x∗ ≡ y.

Proof. By simultaneous induction on the derivations. Most cases follow by the IH and axioms,
with a few relying on KAT theorems like sliding, denesting, star expansion [8], and pushback
negation (Pushback-Neg).
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�

Theorem 3.6 (Pushback existence). For each of the PB relations, every left side relates to a right
side that is no larger, e.g., for all x there exists y � x such that x∗ PB∗ y.

Proof. By induction on the lexicographical order of: the subterm ordering (≺); the size of x ; the
size ofm; and the size of a. Cases go by using splitting (Lemma 3.3) to show that derivations exist
followed by subterm ordering congruence to �nd orderings to apply the IH.

�

Finally, to reiterate our discussion of PB•, Theorem 3.6 shows that every left-hand side of the
pushback relation has a corresponding right-hand side. We haven’t proved that the pushback
relation is functional— if a term has more than one maximal test, there could be many di�erent
choices of how we perform the pushback.

Now that we can push back tests, we can show that every term has an equivalent normal form.

Corollary 3.7 (Normal forms). For all p ∈ T ∗, there exists a normal form x such p norm x and
that p ≡ x .

Proof. By induction on p, using Theorems 3.6 and 3.5 in the Seq and Star case. �

The PB relations and these two separate proofs are one of the contributions of this paper: we
believe it is the �rst time that a KAT normalization procedure has been made explicit, rather than
hiding inside of completeness proofs. Temporal NetKAT, which introduced the idea of pushback,
proved a more limited variation of Theorems 3.5 and 3.6 as a single theorem.

3.4 Completeness
We prove completeness—that if [[p]] = [[q]] then p ≡ q—by normalizing p and q and comparing the
resulting terms, just like other KATs do [1, 8]. Our completeness proof uses the completeness of
Kleene algebra (KA) as its foundation: the set of possible traces of actions performed for a restricted
action in our denotational semantics is a regular language, and so the KA axioms are sound and
complete for it.

Theorem 3.8 (Completeness). If there is a complete emptiness-checking procedure for T predicates,
then if [[p]] = [[q]] then p ≡ q.

Proof. There must exist normal forms x and y such that p norm x and q norm y and p ≡ x and
q ≡ y (Corollary 3.7); by soundness (Theorem 3.1), we can �nd that [[p]] = [[x]] and [[q]] = [[y]], so it
must be the case that [[x]] = [[y]]. We will �nd a proof that x ≡ y; we can then transitively construct
a proof that p ≡ q.

In order to support a syntactic comparison between the cases of our two normal forms, we
construct equivalent normal forms that perform full case analysis on each component test from
both x and y. As a �rst step, we expand x and y into x̂ and ŷ of the form:

x̂ = a1 · a2 · · · · · an ·m1 ·m2 · · · · ·mn
+ ¬a1 · a2 · · · · · an ·m2 · · · · ·mn
+ a1 · ¬a2 · · · · · an ·m1 · · · · ·mn
+ . . .
+ ¬a1 · ¬a2 · · · · an ·mn

As a second step, we add each possible expansion from y into x and vice versa. Since the client
theory can decide emptiness, we can eliminate those cases where we’ve combined contradictory
terms. It now remains to be seen that syntactically equal predicates at the front are followed
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α ::= b = true
π ::= b := true | b := false

pred(b = true, t) = last(t)(b)
sub(α) = {α }

b ∈ B

State = B → {true, false}
act(b := true,σ ) = σ [b 7→ true]
act(b := false,σ ) = σ [b 7→ false]

Pushback
b := true · b = true PB 1
b := false · b = true PB 0

Axioms
(b := true) · (b = true) ≡ (b := true) Set-Test-True-True

(b := false) · (b = true) ≡ 0 Set-Test-False-True

Fig. 8. BitVec, bit vectors

by equivalent commands. We can do so by appealing to completeness of KA, since the traces of
commands run in our semantics can be interpreted as a regular language . �

4 CASE STUDIES: CLIENT THEORIES AND HIGHER-ORDER THEORIES
We de�ne each of the client theories and higher-order theories that were discussed in Section 2.

4.1 Bit vectors
The simplest KMT we can add is one of bit vectors: we add some �nite number of bits which
can be set to true or false and tested for their current value (Figure 8). The theory adds actions
b := true and b := false for boolean variables b, and tests of the form b = true, where b is
drawn from some set of names B. Since our bit vectors are embedded in a KAT, we can use KAT
operators to build up encodings on top of bits: b = false desugars to ¬(b = true); flip b desugars to
(b = true · b := false) + (b = false · b := true). We could go further and de�ne numeric operators
on collections of bits, at the cost of producing larger terms. We aren’t limited to just numbers, of
course; once we have bits, we can encode any size-bounded data structure we like.

KAT+B! [29] develops a nearly identical theory, though our semantics admit di�erent equations.
We use a trace semantics, where we distinguish between (b := true · b := true) and (b := true).
Even though the �nal states are equivalent, they produce di�erent traces because they run di�erent
actions. KAT+B!, on the other hand, doesn’t distinguish based on the trace of actions, so they �nd
that (b := true · b := true) ≡ (b := true). It’s di�cult to say whether one model is better than the
other—we imagine that either could be appropriate, depending on the setting. Our system can only
work with a tracing semantics—see related work (Section 7) for a comparison with Kleene algebra
with equations [33], a framework that can handle non-tracing semantics.

4.2 Increasing naturals
One particularly useful client theory is IncNat, which we pronounce increasing naturals: �x a
set of variables,V , which range over natural numbers, and allow for increment operations and
comparison to constants (Figure 9). We desugar x < n to ¬(x > n − 1); we writem > n to mean 1
whenm is greater than n and 0 otherwise and max(m,n) similarly.

The proof obligations are not particularly di�cult: if we count n as part of the size of x > n, then
sub(x > n) produces appropriately “smaller” terms. The pushback’s soundness is relatively easy to
see, since it corresponds precisely to equivalence rules: incx · incx · x > 5 ≡ x > 3 · incx · incx . The
deductive completeness of the model shown here can be reduced to Presburger arithmetic, though
we can of course use a much simpler solver for integer interval constraints.

For the relative ease of de�ning IncNat, we get real power—we’ve extended KAT with unbounded
state! It is sound to add other operations to IncNat, like multiplication or addition by a scalar. So
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α ::= x > n
π ::= incx | x := n

pred(x > n, t) = last(t)(x) > n
sub(x > n) = {x > m | m ≤ n}

n ∈ N
x ∈ V

State = V → N
act(incx ,σ ) = σ [x 7→ σ (x) + 1]

act(x := n,σ ) = σ [x 7→ n]

Pushback
x := n · (x > m) PB (n > m)
incy · (x > n) PB (x > n)
incx · (x > n) PB (x > n − 1)

when n , 0
incx · (x > 0) PB 1

Axioms
¬(x > n) · (x > m) ≡ 0 when n ≤ m GT-Contra
x := n · (x > m) ≡ (m > n) · x := n Asgn-GT
(x > m) · (x > n) ≡ (x > max(m,n)) GT-Min

incy · (x > n) ≡ (x > n) · incy GT-Comm
incx · (x > n) ≡ (x > n − 1) · incx when n > 0 Inc-GT

incx · (x > 0) ≡ incx Inc-GT-Z

Fig. 9. IncNat, increasing naturals

α ::= α1 | α2
π ::= π1 | π2

sub(αi ) = subi (αi )

State = State1 × State2
pred(αi , t) = predi (αi , ti )
act(πi ,σ ) = σ [σi 7→ acti (πi ,σi )]

Pushback extending T1 and T2
π1 · α2 PB α2 π2 · α1 PB α1

Axioms extending T1 and T2
π1 · α2 ≡ α2 · π1 L-R-Comm
π2 · α1 ≡ α1 · π2 R-L-Comm

Fig. 10. Prod(T1,T2), products of two disjoint theories

long as the operations are monotonically increasing and invertible, we can still de�ne a pushback
and corresponding equational rules. It is not possible, however, to compare two variables directly
with tests like x = y—to do so would not satisfy the pushback requirement. It would be bad if it did:
the test x = y can encode context-free languages! The (inadmissible!) term x := 0 · y := 0; (x :=
x + 1)∗ · (y := y + 1)∗ · x = y describes programs with balanced increments between x and y. For
the same reason, we cannot safely add a decrement operation decx . Either of these would allow us
to de�ne counter machines, leading inevitably to undecidability.

4.3 Disjoint products
Given two client theories, we can combine them into a disjoint product theory, Prod(T1,T2), where
the our states our products and the predicates and actions from T1 can’t a�ect T2 and vice versa
(Figure 10). We explicitly give de�nitions for pred and act that defer to the corresponding sub-
theory, using ti to project the trace state to the ith component. It may seem that disjoint products
don’t give us much, but they in fact allow for us to simulate much more interesting languages in
our derived KATs. For example, Prod(BitVec, IncNat) allows us to program with both variables
valued as either booleans or (increasing) naturals; the product theory lets us directly express the
sorts of programs that Kozen’s early static analysis work had to encode manually, i.e., loops over
boolean and numeric state [32].
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α ::= in(x , e) | e = c | αe
π ::= add(x , c) | del(x , c) | πe

pred(in(x , c), t) = last(t)2(e) ∈ last(t)1(x)
pred(αe , t) = pred(αe , t2)

sub(in(x , c)) = {in(x , c)} ∪ sub(¬(e = c))
sub(e = c) = sub(e = c)

sub(αe ) = sub(αe )

c ∈ C
e ∈ E
x ∈ V

State = (V → P(C)) × (E → C)
act(add(x , e),σ ) = σ [σ1[x 7→ σ1(x) ∪ {c}]]
act(del(x , e),σ ) = σ [σ1[x 7→ σ1(x) \ {c}]]

act(πe ,σ ) = σ [σ2 7→ act(πe ,σ2)]

Pushback extending E
add(y, e) · in(x , c) PB in(x , c)
add(x , e) · in(x , c) PB e = c
add(x , e) · αe PB αe
del(y, e) · in(x , c) PB in(x , c)
del(x , e) · in(x , c) PB ¬(e = c) · in(x , c)
del(x , e) · αe PB αe

Axioms extending E
add(y, e) · in(x , c) ≡ in(x , c) · add(y, e) Add-Comm

add(x , e) · in(x , c) ≡ add(x , e) Add-In
del(y, e) · in(x , c) ≡ in(x , c) · del(y, e) Del-Comm

del(x , e) · in(x , c) ≡
¬(e = c) · in(x , c) · del(x , e)

Del-In

add(x , e) · αe ≡ αe · add(x , e) Add-E-Comm
del(x , e) · αe ≡ αe · del(x , e) Del-E-Comm

Fig. 11. Set(E), unbounded sets over arbitrary expressions/constants

α ::= x[e] = c | e = c | αe
π ::= x[c] := e | πe

pred(x[e] = c), t) = last(t)1(last(t)2(e)) = c
pred(αe , t) = pred(αe , t2)

sub(x[e] = c) = {x[e] = c} ∪
sub(¬(e = c ′))

sub(e = c) = sub(e = c)
sub(αe ) = sub(αe )

c ∈ C
e ∈ E
x ∈ V

State = (V → C → C) × (E → C)
act(x[c] := e),σ ) = σ [σ1[c 7→ σ2(e)]]

act(πe ,σ ) = σ [σ2 7→ act(πe ,σ2)]

Pushback extending E
(x[c] := e) · αe PB αe
(y[c1] := e1) · (x[e2] = c2) PB x[e2] = c2
(x[c1] := e1) · (x[e2] = c2) PB (e2 = c1 · e1 = c2) + (¬(e2 = c1) · x[e2] = c2)

Axioms extending E
(x[c] := e · αe ) ≡ (αe · x[c] := e) E-Comm

(y[c1] := e1 · x[e2] = c2) ≡ (x[e2] = c2 · y[c1] := e1) Map-NEq
(x[c1] := e1 · x[e2] = c2) ≡ ((e2 = c1 · e1 = c2) + ¬(e2 = c1) · x[e2] = c2) · x[c1] := e1 Map-Eq

Fig. 12. Map(E), unbounded maps over arbitrary expressions/constants

4.4 Unbounded sets
We de�ne a KMT for unbounded sets (Figure 11), parameterized on a theory of expressions E. The
set data type supports two operations: add(x , e) adds the value of expression e to set x, and del(x , e)
removes the value of expression e from set x . It also supports a single test: in(x , c) checks if the
constant c is contained in set x .

To instantiate the Set theory, we need a few things: expressions E, a subset of constants C ⊆ E,
and predicates for testing (in)equality between expressions and constants (e = c and e , c). (We
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α ::= ©a | a S b | a
π ::= πT

sub(©a) = {©a} ∪ sub(a)
sub(a S b) = {a S b} ∪ sub(a) ∪ sub(b)
act(π ,σ ) = act(π ,σ )

 a = ¬ © ¬a
a B b = a S b +�a
start = ¬ © 1
♦a = 1 S a

�a = ¬♦¬a

Pushback extending T

π · ©a PB a

π · a PB•T a′ · π π · b PB•T b ′ · π

π · (a S b) PB b ′ + a′ · (a S b)

State = StateT
pred(©a, 〈σ , l〉)) = false
pred(©a, t 〈σ , l〉)) = pred(a, t)
pred(a S b, 〈σ , l〉) = pred(b, 〈σ , l〉)
pred(a S b, t 〈σ , l〉) = pred(b, t 〈σ , l〉) ∨

(pred(a, t 〈σ , l〉) ∧ pred(a S b, t))

Axioms extending T
inherited from T
©(a · b) ≡ ©a · ©b LTL-Last-Dist-Seq
©(a + b) ≡ ©a +©b LTL-Last-Dist-Plus

 1 ≡ 1 LTL-WLast-One
a S b ≡ b + a · ©(a S b) LTL-Since-Unroll

¬(a S b) ≡ (¬b) B (¬a · ¬b) LTL-Not-Since
a ≤  a · b → a ≤ �b LTL-Induction

�a ≤ ♦(start · a) LTL-Finite

Fig. 13. LTLf (T ), linear temporal logic on finite traces over an arbitrary theory

can’t, in general, expect tests for equality of non-constant expressions, as it may cause us to
accidentally de�ne a counter machine.) We treat these two extra predicates as inputs, and expect
that they have well behaved subterms. Our state has two parts: σ1 : V → P(C) records the current
sets for each set inV , while σ2 : E → C evaluates expressions in each state. Since each state has
its own evaluation function, the expression language can have actions that update σ2.

For example, we can have sets of naturals by setting E ::= n ∈ N | i ∈ V ′, whereV ′ is some set
of variables distinct from those we use for sets. We can update the variables inV ′ using IncNat’s
actions while simultaneously using set actions to keep sets of naturals. Our KMT can then prove
that the term (inci · add(x , i))∗ · (i > 100) · in(x , 100) is non-empty by pushing tests back (and
unrolling the loop 100 times). The set theory’s sub function calls the client theory’s sub function,
so all in(x , e) formulae must come later in the global well ordering than any of those generated
by the client theory’s e = c or e , c . Sets can almost be de�ned as a disjoint product of set and
expression theories, except that the set theory’s pushback generates terms in the expression theory.

4.5 Unbounded maps
Maps aren’t much di�erent from sets; rather than having simple membership tests, we instead
check to see whether a given key maps to a given constant (Figure 12). Our writes use constant keys
and expression values, while our reads use variable keys but constant values. We could have �ipped
this arrangement—writing to expression keys and reading from constant ones—but we cannot allow
both reads and writes to expression keys. Doing so would allow us to compare variables, putting us
in the realm of context-free languages and foreclosing on the possibility of a complete theory. We
could add other operations (at the cost of even more equational rules/pushback entries), like the
ability to remove keys from maps or to test whether a key is in the map or not. Just as for Set(E),
we must put all x[e] = c and x[e] , c formulae later in the global well ordering than any of those
generated by the client theory’s e = c or e , c .
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α ::= f = v
π ::= f ← v

sub(α) = {α }
pred(f = v, t) = last(t). f = v

Pushback
f ← v · f = v PB 1
f ← v · f = v ′ PB 0 when v , v ′
f ′← v · f = v PB f = v

F = packet �elds
V = packet �eld values

State = F→ V
act(f ← v,σ ) = σ [f 7→ v]

Axioms
f ← v · f ′ = v ′ ≡ f ′ = v ′ · f ← v PA-Mod-Comm

f ← v · f = v ≡ f ← v PA-Mod-Filter
f = v · f = v ′ ≡ 0, if v , v ′ PA-Contra∑

v f = v ≡ 1 PA-Match-All

Fig. 14. Tracing NetKAT a/k/a NetKAT without dup

4.6 LTLf
The most interesting higher-order theory we present is that for past-time linear temporal logic on
�nite traces, LTLf (Figure 13). Our theory of LTLf is itself parameterized on a theory T , which
introduces its own predicates and actions—any T predicate can appear inside of LTLf ’s predicates.

LTLf only needs two predicates: ©a, pronounced “last a”, means a held in the prior state; and
a S b, pronounced “a since b”, means b held at some point in the past, and a has held since then.
There is a slight subtlety around the beginning of time: we say that ©a is false at the beginning
(what can be true in a state that never happened?), and a S b degenerates to b at the beginning of
time. The last and since predicates together are enough to encode the rest of LTLf ; encodings are
given below the syntax.

The pred de�nitions mostly defer to the client theory’s de�nition of pred (which may recursively
reference the LTLf pred function), unrolling S as it goes (LTL-Since-Unroll). The pushback
operation uses inference rules: to push back S, we unroll a S b into a · ©(a S b) + b; pushing last
through an action is easy, but pushing back a or b recursively uses the PB• judgment. Adding these
rules leaves our judgments monotonic, and if π · a PB• x , then x =

∑
aiπ .

The equivalences given are borrowed from Temporal NetKAT [8] and the deductive completeness
result is borrowed from Campbell’s undergraduate thesis, which proves deductive completeness
for an axiomatic framing and then relates those axioms to our equations [10].

4.7 Tracing NetKAT
NetKAT de�nes a KMT over packets, which we model as functions from packet �elds to values
(Figure 14). NetKAT could, in principle, be implemented as a particular instance ofBitVec (Section ??),
but we present it in full in order to simplify Temporal NetKAT (Section 4.8).

Our trace-based strategy for the semantics means we have a slightly di�erent model from
conventional NetKAT [1]. NetKAT, like KAT+B! [29], normally merges adjacent writes. If the policy
analysis demands reasoning about the history of packets traversing the network—reasoning, for
example, about which routes packets actually take—the programmer must insert dup commands to
record relevant moments in time. From our perspective, NetKAT very nearly has a tracing semantics,
but the traces are selective. If we put an implicit dup before every �eld update, NetKAT has our
tracing semantics. The upshot is that our “tracing NetKAT” has a slightly di�erent equational theory
from conventional NetKAT, rejecting the following NetKAT laws as unsound for trace semantics:

f = v · f ← v ≡ f = v PA-Filter-Mod
f ← v · f ← v ′ ≡ f ← v ′ PA-Mod-Mod

f ← v · f ′← v ′ ≡ f ′← v ′ · f ← v PA-Mod-Mod-Comm
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α ::= x < n
π ::= x := min+(®x)

pred(x < n, t) = last(t)(x) < n
sub(x < n) = {xi < m | m ≤ n,xi ∈ V}

act(x := min+(®x),σ ) = σ [x 7→ 1 +min(σ (®x))]

n ∈ N ∪ {∞}
x ∈ V

State = V → N

Pushback axioms are identical to pushback
x := min+(®x) · (x < ∞) PB Σi (xi < ∞)
x := min+(®x) · (x < n) PB Σi (xi < n − 1)

Fig. 15. SP, shortest paths in a graph

In principle, one can abstract our semantics’ traces to �nd the more restricted NetKAT traces, but
we can’t o�er any formal support in our framework for abstracted reasoning. Just as for BitVec, It
is possible that ideas from Kozen and Mamouras could apply here [33]; see Section 7.

4.8 Temporal NetKAT
We can derive Temporal NetKAT as LTLf (NetKAT), i.e., LTLf instantiated over tracing NetKAT;
the combination yields precisely the system described in the Temporal NetKAT paper [8]. Since our
LTLf theory can now rely on Campbell’s proof of deductive completeness for LTLf [10], we can
automatically derive a stronger completeness result for Temporal NetKAT, which was complete
only for “network-wide” policies, i.e., those with start at the front.

4.9 Distributed routing protocols
The theory for naturals with the min+ operator used for shortest path routing is shown in Figure 15.
The theory is similar to the IncNat theory but for some minor di�erences. First, the domain is now
over N ∪ {∞}. Second, there is a new axiom and pushback relation relating min+ to a test of the
form x < n. Third, the subterms function is now de�ned in terms of all other variables, which are
in�nite in principle but �nite in any given term (e.g., the number of routers in a given network).

The theory for the BGP protocol instance with local router policy described in Figure 2 is now
shown in Figure 16. For brevity, we only show the theory for router C in the network. The state
has two parts: the �rst part maps each router to a pair of a natural number describing the path
length to the destination for that router, and a boolean describing whether or not the router has a
route to the destination; the second part maps links to a boolean representing whether the link is
up or not. We require new axioms corresponding to each of the pushback operations shown. The
action updateC commutes with unrelated tests, and otherwise behaves as described in Section 2.

5 AUTOMATA
While the deductive completeness proof from Section 3 gave a way to determine equivalence of
KAT terms through a normalization rewriting, using such rewriting-based proofs as the basis of a
decision procedure would be impractical. But just as pushback gave us a novel completeness proof,
it can also help us develop an automata-theoretic account of equivalence.

Our automata theory is heavily based on previous work on Antimirov partial derivatives [4] and
NetKAT’s compiler [50]. We must diverge from prior work, though, to account for client theory
predicates that depend on more than the last state of the trace. Our solution is adapted from the
compilation strategy from Temporal NetKAT [8]: to construct an automaton for a term in a KMT,
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α ::= C0 < n | C1 | failR1,R2 R = Routers
π ::= updateC L = R × R Links

pred(C1, t) = last(t)1(C)1 n ∈ N
pred(C0 < n, t) = last(t)1(C)0 < n x ∈ R
pred(failR1,R2 , t) = last(t)2(R1,R2) State = R→ N × {true, false}

sub(failR1,R2 ) = {failR1,R2 } × L→ {true, false}
sub(C1) = {A1,B1, failA,C , failB,C }

sub(C0 < n) = {A0 < n − 1,B0 < n − 1,A1,B1, failA,C , failB,C }

act(updateC),σ ) = σ

C 7→

(1 + σ (B)0, true) path(B)
(1 + σ (A)0, true) else if path(A)
(σ (C)0,σ (C)1) otherwise


where path(X ) = σ (X )1 ∧ σ ((X ,C))1

Pushback axioms are identical to pushback
(π · failR1,R2 ) PB failR1,R2
(updateC · D1) PB D1
(updateC ·C1) PB ¬failA,C · A1 + failB,C · B1
(updateC · D0 < n) PB (D < n)
(updateC ·C0 < n) PB ¬failA,C · (¬B1 + failB,C ) · A1 · (A0 < n − 1) +

¬failB,C · B1 · (B0 < n − 1)

Fig. 16. BGP, protocol theory for router C from the network in Figure 2

we build two separate automata—one for the policy fragment of the term and one for each predicate
that occurs therein—and combine the two in a specialized intersection operation.

5.1 KMT automata, formally and by example
A KMT automaton is a 5-tuple (S, s0, ϵ,δ ,δ0), where: the set of automata states S identi�es non-
initial states (unrelated to State); the initial state s0 is distinguished from those in S ; the acceptance
function ϵ : S → P(State) is a function identifying which theory states (in State) are accepted
in each automaton state s ∈ S ; the transition function δ : S → State → P(S × Log) identi�es
successor states given an automaton and a single KMT state; and the initial transition function
δ0 : Trace→ P(S × State) looks at a trace and identi�es a set of successor states. Intuitively, the
automata match traces, which are sequences of log entries: 〈σ0,π1〉 . . . 〈σn ,πn〉.

Consider the KMT automaton shown in Figure 17 (right) for the term incx ∗ · ♦x > 2 taken from
the LTLf (IncNat) theory. The automaton would accept a trace of the form: 〈[x 7→ 1,⊥]〉〈[x 7→
2, incx ]〉〈[x 7→ 3], incx 〉. Informally, the automaton starts in the initial state s0, which is (0,0) (the
particular value used to represent the state, tuples in this case, is unimportant), and moves to state
(1,1) for the transition labeled with x > 0. This predicate describes a set of theory states including
the one where x is 1. The automaton then moves to state (3,1) and then (4,1) unconditionally for the
incx action, which corresponds to actions in the log entries of the trace. The acceptance function
assigns state (4,1) the condition 1, meaning that all theory states are accepted; no other states are
accepting, i.e., the acceptance function assigns them the condition 0.

The transition function δ takes an automaton state S and a KMT state and maps them to a set
of new pairs of automaton state and and KMT log items (a KMT state/action pair). In the �gure,
we transitions as arcs between states with a pair of a KMT test and a primitive KMT action. For

, Vol. 1, No. 1, Article 1. Publication date: July 2017.



1:22 Ryan Becke�, Eric Campell, and Michael Greenberg

Fig. 17. Automata construction for incx ∗ · ♦x > 2 in the theory of LTLf (IncNat).

example, the transition from state (1,1) to (2,1) is captured by the term 1 · incx , which captures
the e�ect of updating the theory domain state in the log by incrementing the value of x . Finally,
the initial transition function δ0 is similar to δ , but accounts for the fact that there may be an
initial trace of log items in the initial state (as in LTLf ). For example, the transition from (0,0) to
(4,1) is taken if either the initial trace has x > 2 in the current state or at some point in the past
(represented with multiple transitions).

Taken all together, our KMT automaton captures the fact that there are 4 interesting cases for
the term incx ∗ · ♦x > 2. If the program trace already had x > 2 at some point in the past or has
x > 2 in the current state, then we move to state (4,1) and will accept the trace regardless of how
many increment commands are executed in the future. If the initial trace has x > 1, then we move
to state (3,1). If we see at least one more increment command, then we move to state (4,1) where the
trace will be accepted no matter what. If the initial trace has x > 0, we move to state (2,1) where
we must see at least 2 more increment commands before accepting the trace. Finally, if the initial
trace has any other value (here, only x = 0 is possible), then we move to state (1,1) and must see at
least 3 increment commands before accepting.

5.2 Constructing KMT automata
The KMT automaton for a given term p is constructed in two phases: we �rst construct a term
automaton for a version of p where arbitrary predicates are placed as acceptance conditions. Such a
symbolic automaton can be unwieldy—for example, the term automaton in Figure 17 (left) has a
temporal predicate as an acceptance condition—challenging to reason about! We therefore �nd
every predicate mentioned in the term automaton and construct a corresponding theory automaton,
using pushback to move tests to the front of the automaton. We �nally intersect these two to form
a combined automaton with simple acceptance conditions (0 or 1).

5.2.1 Term automata. Given a KMT term p, we start by annotating each occurrence of a theory
action π in p with a unique label `. Then we take the partial derivative of p by computing D(p).
Figure 18 gives the de�nition of the derivative function. The derivative computes a set of linear
forms—tuples of the form 〈d, `,k〉. There will be exactly one such tuple for each unique label `, and
each label will represent a single state in the automaton. The acceptance function for state ` is
given by E(k). To compute the transition function, for each such tuple, we then compute D(k),
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Derivative D : Tπ → P(Tπ × N × Tπ )
D(0) = ∅

D(1) = ∅

D(α) = ∅

D(π `) = {〈1, `, 1〉}
D(p + q) = D(p) ∪ D(q)
D(p · q) = D(p) � q ∪ E(p) � D(q)
D(p∗) = D(p) � p∗

D(p) � q = {〈d, `,k · q〉 | 〈d, `,k〉 ∈ D(p)}
q � D(p) = {〈q · d, `,k〉 | 〈d, `,k〉 ∈ D(p)}

Acceptance condition E : Tπ → Tα
E(0) = 0
E(1) = 1
E(α) = α
E(π `) = 0
E(p + q) = E(p) + E(q)
E(p · q) = E(p) · E(q)
E(p∗) = 1

Fig. 18. KMT partial derivatives

which will return another set of tuples. For each such tuple: 〈d ′, `′,k ′〉 ∈ D(k), we add a transition
from state ` to state `′ labeled with the term d ′ · π `′ . The d part is a predicate identifying when the
transition activates, while the k part is the “continuation”, i.e., what else in the term can be run.

For example, the term incx ∗ · ♦x > 2, is �rst labeled as (incx 1)∗ · ♦x > 2. We then compute
D((incx 1)∗ · ♦x > 2) = {〈1, inc1, (inc1x )∗ · ♦x > 2〉}. Taking the derivative of the resulting value,
(inc1x )

∗ · ♦x > 2, results in the same tuple, so there is a single transition from state 1 to itself,
which has its transition labeled with 1 · inc1x . The acceptance function for this state is given by
E((inc1x )

∗ · ♦x > 2) = ♦x > 2. The resulting automaton is shown in Figure 17 (left). We add a
transition from the initial state 0 to state 1 to represent the initial transition function.

5.2.2 Theory automata. Once we’ve constructed the term automaton, we construct theory
automata for each predicate that appears in an acceptance or transition condition of the term
automaton. The theory automaton for a predicate a tracks whether a holds so far in a trace, given
some initial trace and a sequence of primitive actions. We use pushback (Section 3.3.2) to generate
the transition relation of the theory automaton, since the pushback exactly characterizes the e�ect
of a primitive action π on predicates a: to determine if a predicate α is true after some action a, we
can instead check if b is true in the previous state when we know that π · a PB• b · π .

While a KMT may include an in�nite number of primitive actions (e.g., x := n for n ∈ N in
IncNat), any given term only has �nitely many. For incx ∗ · ♦x > 2, there is only a single primitive
action: incx . For each such action π that appears in the term and each subterm s of the test ♦x > 2,
we compute the pushback of π and s .

For non-initial states, we maintain a labeling function L, which identi�es the set subterms of
the top-level predicate a that hold in that state. For each subterm s , we add a transition 1 · π from
states x to y if s ∈ L(y) and π · s PB• b · π , and b is true given the labeling L(x). For example,
in the theory automaton show in Figure 17 (middle), there is a transition from state 3 to state 4
for action incx . State 4 is labeled with {1,x > 0,x > 1,x > 2,♦x > 2} and state 3 is labeled with
{1,x > 0,x > 1}. We compute incx · ♦x > 2 PB (♦x > 2 + x > 1). Therefore, ♦x > 2 should be
labeled in state 4 if and only if either ♦x > 2 is labeled in state 3 or x > 1 is labeled in state 3. Since
state 3 is labeled with x > 1, it follows that state 4 must be labeled with ♦x > 2.

We must again treat the initial state specially: there is a transition for each satis�able combination
of subterms of the top-level predicate a; the transition leads to a state labeled with all the other
subterms implied by this subterm. For example, if a = ♦x > 2 and we are considering the subterm
x > 2, then we know that if x > 2, then x > 1 and ♦x > 2 as well, so we construct an edge to
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a node with all three in its label. We can discover these implications by calling out to the client
theory to check validity of the implication.

Finally, a state is accepting in the theory automaton if it is labeled with the top-level predicate
for which the automaton was built. For example, state 4 is accepting (with acceptance function [1]),
since it is labeled with ♦x > 2.

5.3 KMT automata
We can combine the term and theory automata to create a KMT automaton. The idea is to intersect
the two automata together, and replace instances of theory tests in the acceptance and transition
functions of the term automaton with the acceptance condition for the given state in the theory
automata. For example, in Figure 17, the combined automata (right) replaces instances of the ♦x > 2
condition in state 1 of the term automaton, with the acceptance condition from the corresponding
state in the theory automaton. In state (3,1) this is true, while in states (2,1) and (1,1) this is false.
For transitions with the same action π , the intersection takes the conjunction of each edge’s tests.

5.4 Equivalence checking
Due to space constraints, we only brie�y summarize the ideas behind equivalence checking. To
check the equivalence of two KMT terms p and q, we �rst convert both p and q to their respective
(symbolic) automata. We then determinize the automata, using an algorithm based on minterms [14],
to ensure that all transition predicates are disjoint, and the typical automata powerset construction.
We then check for a bisimulation between the two automata [9, 21, 42] by checking if, given any
two bisimilar states, all transitions from the states lead to bisimilar states.

6 IMPLEMENTATION
We have implemented our ideas in OCaml. Users of the library write theory implementations by
de�ning new OCaml modules that de�ne the types of actions and tests, and functions for parsing,
computing subterms, calculating pushback for primitive actions and predicates, and deciding theory
satis�ability functions.

Figure 19 shows an example library implementation of the theory of naturals. The implementation
starts by de�ning a new, recursive module called IncNat. Recursive modules are useful, because
it allows the author of the module to access the �nal KAT functions and types derived after
instantiating KA with their theory while still implementing the theory itself. For example, the
module K on the second line gives us a recursive reference to the resulting KAT instantiated with the
IncNat theory; such self-reference is key for theories like LTLf , which must embed KAT predicates
inside of temporal operators and call the KAT pushback while performing its own (Section 4.6). In
the example, the user then de�nes two types: the type a for tests, and the type p for actions. Tests
are of the form x > n where variable names are represented with strings, and values with OCaml
ints. The only action is to increment the variable, so we simply need to know the variable name.

The �rst function, parse, allows the library author to extend the KAT parser (if desired) to
include new kinds of tests and actions in terms of in�x and named operators. In this example, the
parser is extended to read actions of the form inc(x) and tests of the form x > c . The other functions:
subterms and push_back follow from the KMT theory directly. Finally, the user must implement a
function that checks satis�ability of a theory test. To use a theory, one need only instantiate the
appropriate modules: The module K instantiates LTLF over our theory of incrementing naturals;
the module A gives us an automata theory for K. Checking language equivalence is then simply a
matter of reading in a term, constructing an automata and checking equivalence. In practice, our
implementation uses several optimizations, with the two most prominent being (1) hash-consing all
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module rec IncNat : THEORY = struct

module K = KAT(IncNat) (* recursive self reference to generated KMT *)

type a = Gt of string ∗ int (* alpha ::= x > n *)

type p = string (* pi ::= inc x *)

let parse name es = (* extensible parser *)

match name, es with
| "inc", [EId s1]→ Action s1

| ">", [EId s1; EId s2]→ Test (Gt(s1, int_of_string s2))
| _, _→ failwith "Cannot create theory object"

let rec subterms (a : K.a) = (* for maximal term ordering/pushback *)

match a with

| Gt(_,0)→ PSet.empty
| Gt(v,i)→ PSet.add a (subterms (Gt(v,i−1)))
let push_back (x : K.p) (a : K.a) = (* pushback on theory terms *)

match a with

| Gt(_,0)→ PSet.singleton a

| Gt (y,v) when x = y→ PSet.add (K.theory a) (subterms (Gt(y,i−1)))
| _→ PSet.singleton (K.theory a)
let satisfiable (t : K.test) = ... (* decision procedure *)

end

module K = KAT(LTLF(IncNat)) (* build KAT from LTLF on incrementing naturals *)

module A = Automata(K) (* construct automata for our KAT *)

let main () =
let a = K.parse "inc(x)*; since(true, x>2)" in

let b = K.parse "since(true, x>2); inc(x)* + inc(x)*; x > 2; inc(x)*" in

assert (A.equivalent (A.of_term a) (A.of_term b))

Fig. 19. Simplified example and use of an implementation of IncNat in OCaml.

KAT terms to ensure fast set operations, and (2) lazy construction and exploration of automata for
equivalence checking. Our satis�ability procedure for IncNat makes a heuristic decision between
using our incomplete custom solver or Z3 [17]—our solver is much faster on its restricted domain.

7 RELATEDWORK
Kozen and Mamouras’s Kleene algebra with equations [33] is perhaps the most closely related work:
they also devise a framework for proving extensions of KAT sound and complete. Both their work
and ours use rewriting to �nd normal forms and prove deductive completeness. Their rewriting
systems work on mixed sequences of actions and predicates, but they they can only delete these
sequences wholesale or replace them with a single primitive action or predicate; our rewriting
system (pushback) only works on predicates due to the trace semantics that preserves the order
of actions, but pushing a test back can yield something larger than a single primitive predicate.
In the big picture, Kozen and Mamouras can accommodate equations that combine actions, like
those that eliminate redundant writes in KAT+B! and NetKAT [1, 29], while we can accommodate
complex predicates and their interaction with actions, like those found in Temporal NetKAT [8] or
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those produced by the theory combinators in Section 4. A trace semantics like the one described in
this paper is used in previous work on KAT as well [25, 32].

Coalgebra provides a general framework for reasoning about state-based systems [44, 49], which
has proven useful in the development of automata theory for KAT extensions. Although we do not
explicitly develop the connection in this paper, Kleene algebra modulo theories uses tools similar
to those used in coalgebraic approaches, and one could perhaps adapt our scheme to that setting.

Propositional dynamic logic (PDL) [20] gives an alternative approach to reasoning about regularly
structured programs. It is a decidable logic with a complete axiomatization [41] that can embed
Kleene algebra. However, like KAT, PDL is purely propositional and does not address the problem
of reasoning within a particular domain of interest. Further PDL comes with a di�erent set of
tradeo�s: while KAT is PSPACE complete, PDL is known to be EXPTIME-complete. von Karger
[53] shows how Kleene algebra can be extended with domain and codomain operators to give an
algebraic approach to PDL, however he does not prove that the extension is complete, and still
cannot reason about particular theories.

Our work is loosely related to Satis�ability Modulo Theories (SMT) [18]. The high-level motiva-
tion is the same—to create an extensible framework where custom theories can be combined [38]
and used to increase the expressiveness and power [51] of the underlying technique (SAT vs. KA).
However, the speci�cs vary greatly—while SMT is used to reason about the satis�ability of a
formula, KMT is used to reason about the structure of the program and its interaction with tests.

The pushback requirement detailed in this paper is strongly related to the classical notion of
weakest precondition [6, 19, 45]. However, automatic weakest precondition generation is generally
limited in the presence of loops in while-programs. While there has been much work on loop
invariant inference [23, 24, 26, 31, 40, 47], the problems remains undecidable in most cases. However,
the pushback restrictions of “growth” of terms makes it possible for us to automatically lift the
weakest precondition generation to loops in KAT. In fact, this is exactly what the normalization
proof does when lifting tests out of the Kleene star operator.

The automata representation described in Section 5 is based on prior work on symbolic au-
tomata [14, 42, 50]. One notable di�erence with previous work is that the construction of automata
in our setting is complicated by the fact that theories can introduce predicates that take into account
the entire view of the previous trace. The separate account of theory and term automata we present
takes this into account is based on ideas in Temporal NetKAT [8].

8 CONCLUSION
Kleene algebra modulo theories (KMT) is a new framework for extending Kleene algebra with
tests with the addition of actions and predicates in a custom domain. KMT uses an operation that
pushes tests back through actions to go from a decidable client theory to a domain-speci�c KMT.
Derived KMTs are sound and complete equational theory sound with respect to a trace semantics,
and automatically construct automata-theoretic decision procedures for the KMT. Our theoretical
framework captures common use cases in the form of theories for bitvectors, natural numbers,
unbounded sets and maps, networks, and temporal logic.
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