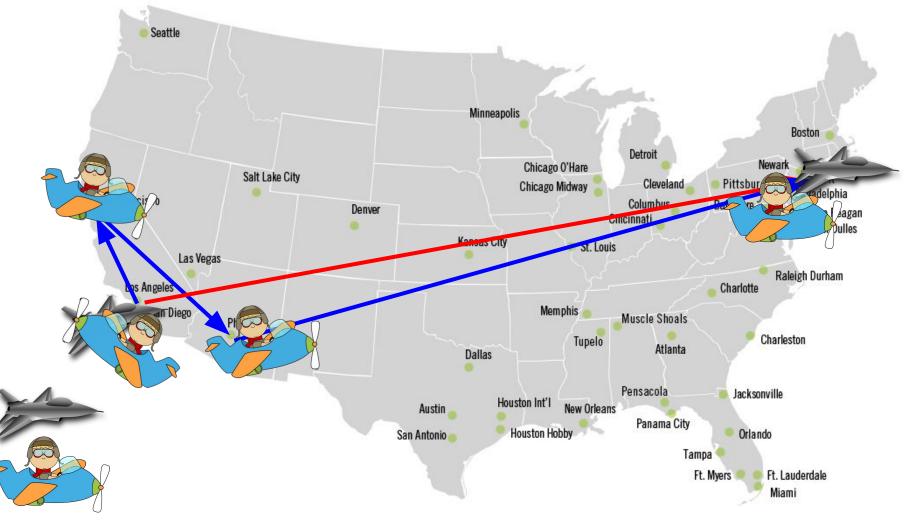
Finite Temporal Logic

Eric Campbell Advised by Michael Greenberg



Questions:

- Do Speedy & Sleepy get to JFK?
- Do Speedy & Sleepy stop flying?
- Speedy has a warrant in Texas. Does Speedy Land in Texas?

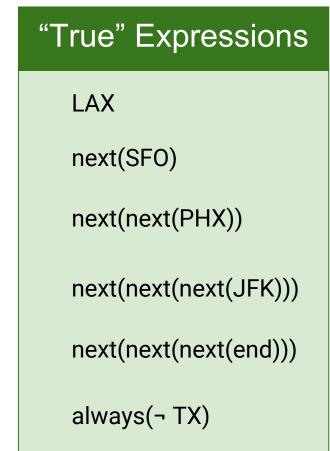
"True" Expressions

LAX

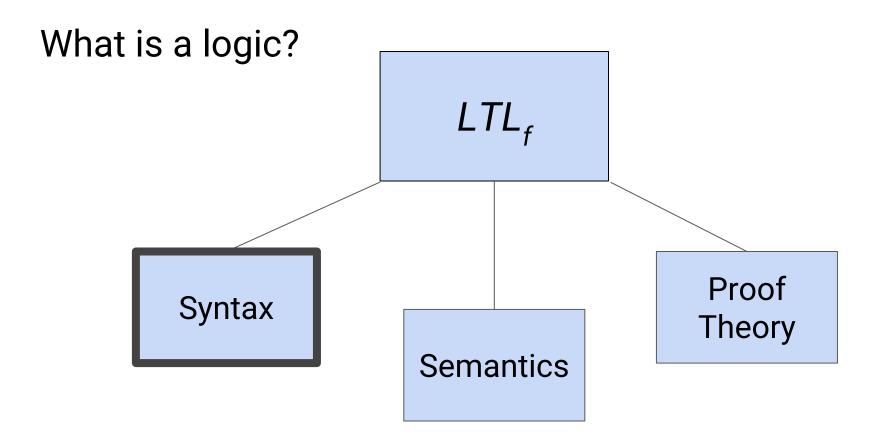
next(JFK)

ever(end), next(end)

always(¬ TX)



Linear Temporal Logic over finite traces (LTL_f)



Syntax for LTL_{f}

Define the set of formulae, $LTL_{f}(\mathbf{V})$, to be

a,b ::= v | False | True | end $|\neg a | next a | always a | ever a$ $|a \rightarrow b | a \lor b | a \land b$

Or equivalently,

$$\begin{split} LTL_f(\mathbf{V}) &= \langle \mathbf{V} \cup \{ \text{True, False, end} \}, \\ & \{ \neg, \text{next, always, ever} \}, \\ & \{ \rightarrow, \lor, \land \} \rangle \end{split}$$

Example Formulae

V = {LAX, SFO, PHX, JFK, CA, TX}

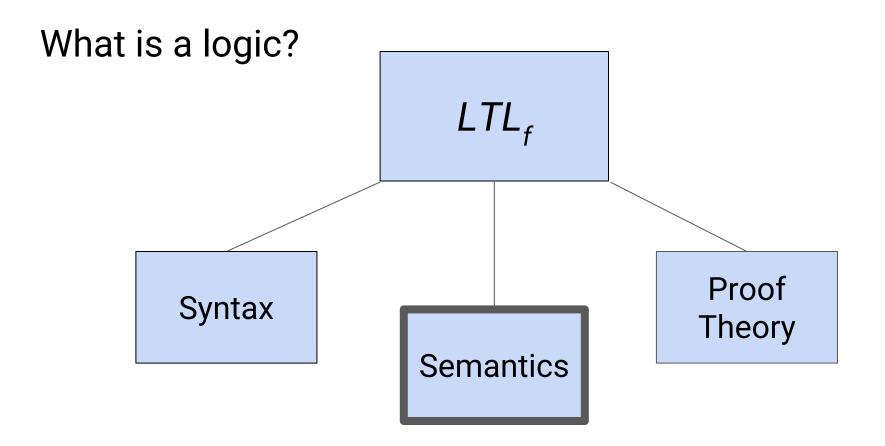
LAX, SFO, LAX \rightarrow CA

next(PHX)

ever(end)

ever(JFK \land end) $\rightarrow \neg$ always(\neg JFK)

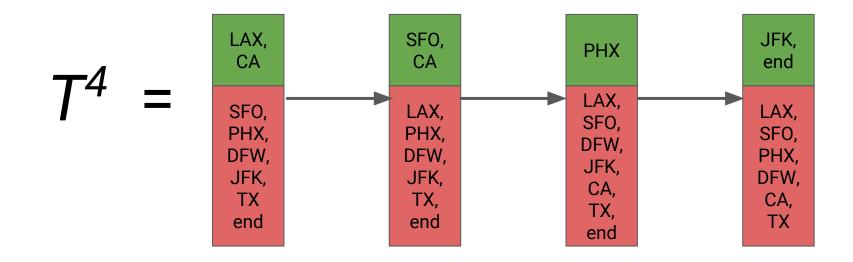
 $\mathsf{LAX} \to \mathsf{ever}(\mathsf{JFK})$

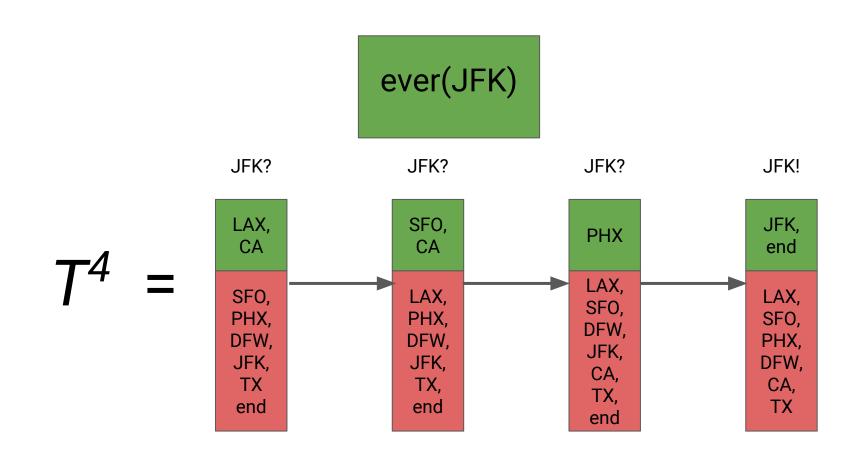


Semantics: A Ground Truth

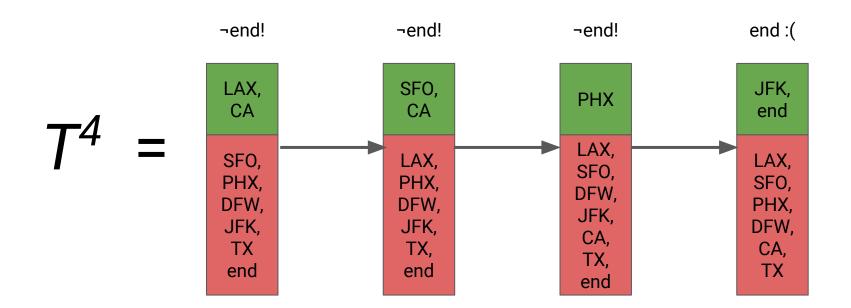
Definition: Timeline

A timeline
$$T^n = (f_1, f_2, \dots, f_n)$$
 is an *n*-tuple of functions $f_i : \mathbf{V} \to \{ \mathbf{T} , \mathbf{F} \}$





always(¬ end)

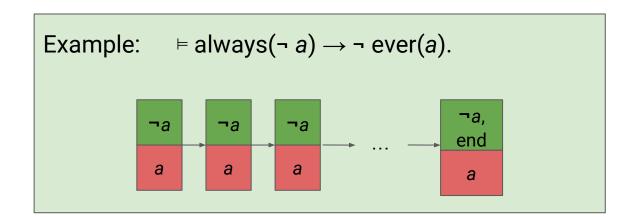


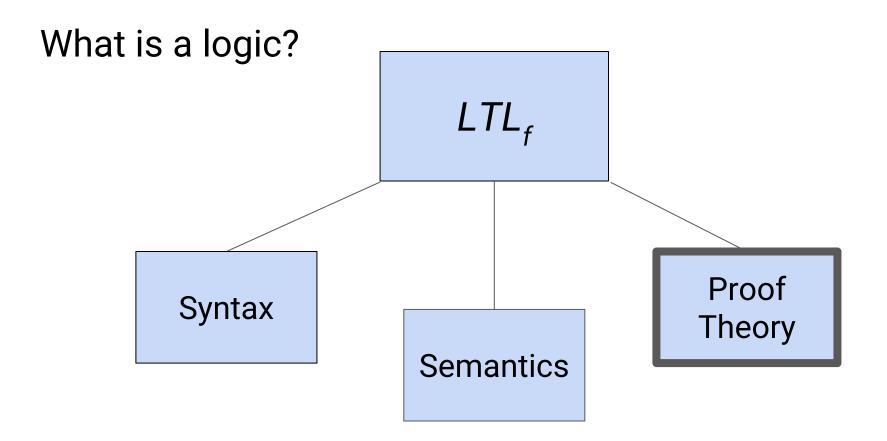
Semantics: Validity (⊨)

Definition: Validity

A formula *a* is *valid* if for every timeline T^n $T^n_i(a) = \text{True} \quad \forall i = 1,..., n,$

Write \models a , if a is valid.





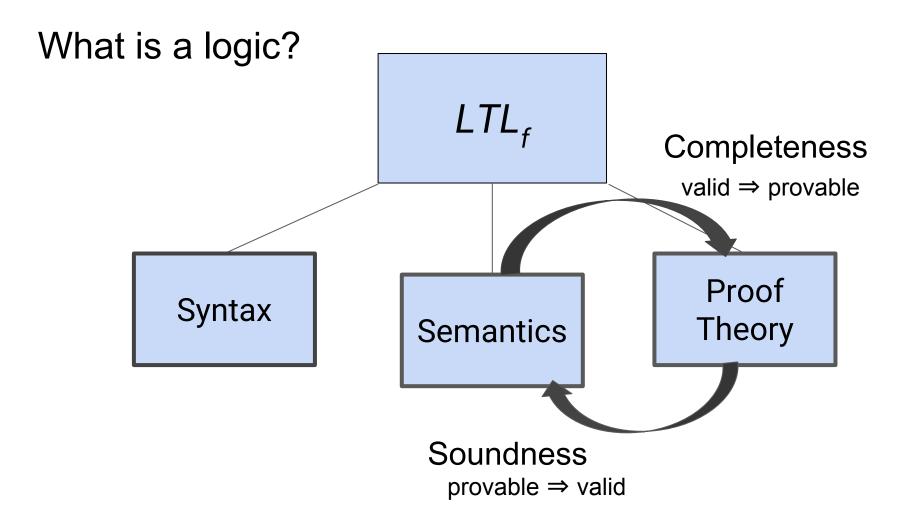
Towards a Proof Theory

- Proofs for specific timelines are done by induction
- Syntactic proofs for timelines in general -- without Timelines??

We want to be able to prove *valid formulae*.

```
Tauts in Classical Logic
+ next (a \rightarrow b) \equiv next(a) \rightarrow
next(b)
+ end \rightarrow \neg next(a)
+ ever(end)
+ ever a \equiv a \lor next(ever(a))
If + a, then + wk_next(a)
If \vdash a \rightarrow b
       and \vdash a \rightarrow wk_next(a),
       then + a \rightarrow always(b)
    No Reference
     to Timelines!!
```

Example Proof ($+$ next(a) $\rightarrow \neg$ end)			
	a a		
Proof.			
1.	next(a)	Assume that next(a) holds	
2.	end	To show ¬ end, assume end for contradiction	
3.	¬ next(a)	Apply \vdash end $\rightarrow \neg$ next(a) to end giving \neg next(a)	
4.	contradiction	- next(a) and next(a) are a contradiction	
5.	¬ end	end was contradictory, so ¬ end	



Soundness & Completeness

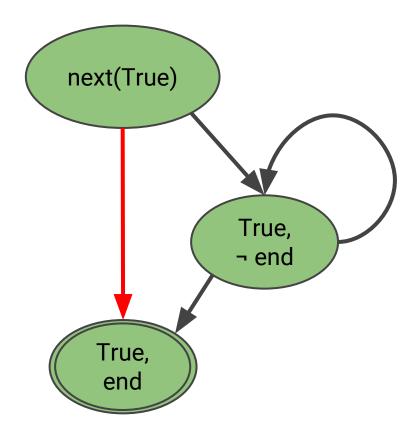
Theorem: Soundness

If \vdash *a* then \vdash *a*. If we can prove *a*, then *a* is valid.

Proof. Simple. show all rules are valid. \Box

Theorem: Completeness

If \models *a* then \vdash *a*. If *a* is valid, we can prove *a*.



Proof. Hard! Construct a graph modelling to all possible timelines. □

One other property: Decidability

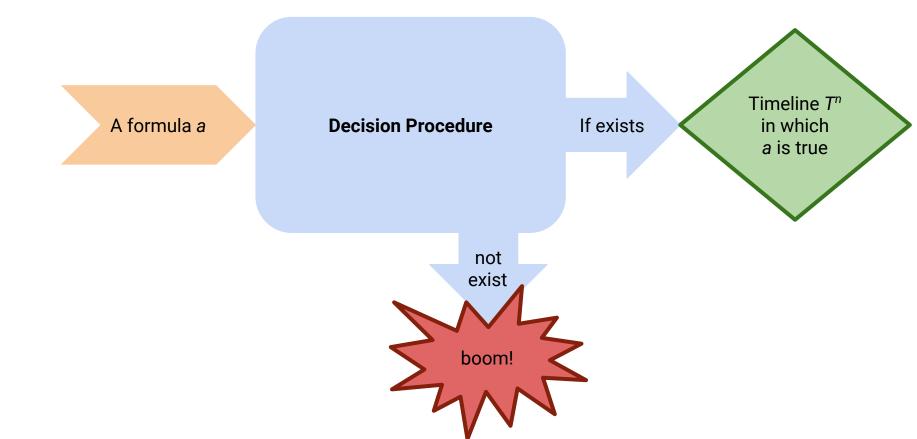
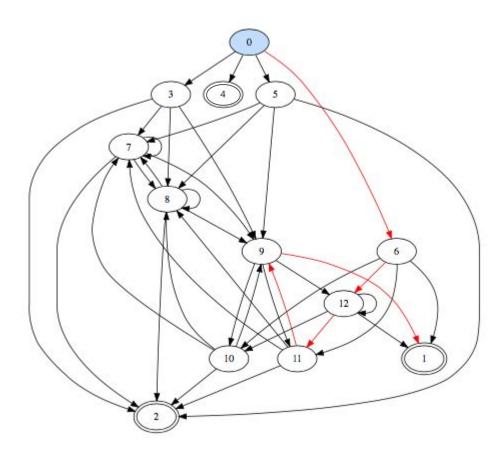
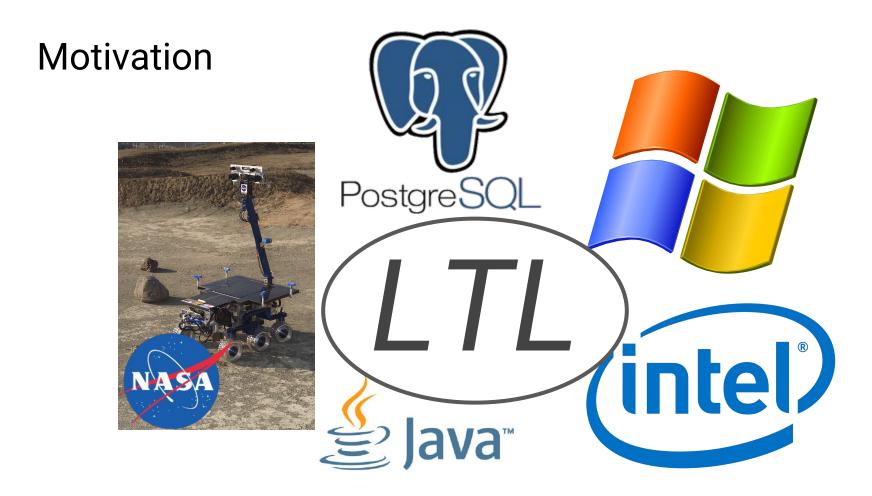


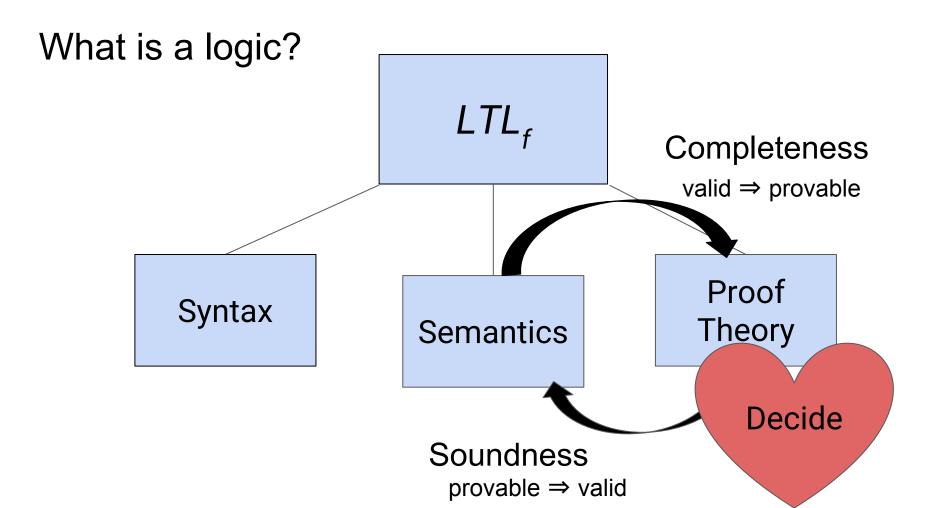
Tableau for always((next a) or b)



Node	Contents
Q_0	$(\{\diamond end, \Box(\bigcirc a \lor b)\}, \emptyset)$
Q_1	$(\{b, \top, \bigcirc a \lor b, \neg \bigcirc a, end, \Box(\bigcirc a \lor b)\}, \{\bot, a, \bigcirc \top \lor \bot, \bigcirc a, \bigcirc \top, \Box \neg end\})$
Q_2	$(\{a, b, \top, \bigcirc a \lor b, \neg \bigcirc a, end, \Box (\bigcirc a \lor b)\}, \{\bot, \bigcirc \top \lor \bot, \bigcirc a, \bigcirc \top, \Box \neg end\})$
Q_3	$({\bigcirc a \lor b, \bigcirc \top \lor \bot}, \diamondsuit end, \bigcirc a, \bigcirc \top, \Box (\bigcirc a \lor b)\}, {\bot, b, \neg \bigcirc a, end, \Box \neg end})$
Q_4	$(\{b, \bigcirc a \lor b, \neg \bigcirc a, end, \diamondsuit end, \Box (\bigcirc a \lor b)\}, \{\bot, \bigcirc \top \lor \bot, \bigcirc a, \bigcirc \top, \Box \neg end\})$
Q_5	$(\{b, \bigcirc a \lor b, \bigcirc \top \lor \bot, \diamondsuit end, \bigcirc a, \bigcirc \top, \Box(\bigcirc a \lor b)\}, \{\bot, \neg \bigcirc a, end, \Box \neg end\})$
Q_6	$(\{b, \bigcirc a \lor b, \bigcirc \top \lor \bot, \neg \bigcirc a, \diamondsuit \text{end}, \bigcirc \top, \Box (\bigcirc a \lor b)\}, \{\bot, \text{end}, \bigcirc a, \Box \neg \text{end}\})$
Q_7	$(\{a, \top, \bigcirc a \lor b, \bigcirc \top \lor \bot, \bigcirc a, \bigcirc \top, \Box(\bigcirc a \lor b)\}, \{\bot, b, \neg \bigcirc a, end, \Box \neg end\})$
Q_8	$(\{a, b, \top, \bigcirc a \lor b, \bigcirc \top \lor \bot, \bigcirc a, \bigcirc \top, \Box(\bigcirc a \lor b)\}, \{\bot, \neg \bigcirc a, end, \Box \neg end\})$
Q_9	$(\{a, b, \top, \bigcirc a \lor b, \bigcirc \top \lor \bot, \neg \bigcirc a, \bigcirc \top, \Box(\bigcirc a \lor b)\}, \{\bot, end, \bigcirc a, \Box \neg end\})$
Q_{10}	$(\{\top, \bigcirc a \lor b, \bigcirc \top \lor \bot, \bigcirc a, \bigcirc \top, \square(\bigcirc a \lor b)\}, \{\bot, a, b, \neg \bigcirc a, end, \square \neg end\})$
Q_{11}	$(\{b, \top, \bigcirc a \lor b, \bigcirc \top \lor \bot, \bigcirc a, \bigcirc \top, \Box (\bigcirc a \lor b)\}, \{\bot, a, \neg \bigcirc a, end, \Box \neg end\})$
Q_{12}	$(\{b, \top, \bigcirc a \lor b, \bigcirc \top \lor \bot, \neg \bigcirc a, \bigcirc \top, \Box(\bigcirc a \lor b)\}, \{\bot, a, end, \bigcirc a, \Box \neg end\})$



Motivation for my work



Questions?

Proof Theory

Tauts in Classical Logic $+ \text{next} (a \rightarrow b) \equiv \text{next}(a) \rightarrow \text{next}(b)$ + end $\rightarrow \neg$ next(a) + ever(end) + ever $a \equiv a \lor next(ever(a))$ If + a, then + wk_next(a) If $\vdash a \rightarrow b$ and $\vdash a \rightarrow wk_next(a)$, then $+a \rightarrow always(b)$

Full Semantics

 $K_i^n(v) = \eta_i(v)$ $K_i^n(\perp) =$ false $K_i^n(a \to b) = \begin{cases} \mathsf{true} & \text{if } K_i^n(a) = \mathsf{false} \\ \mathsf{true} & \text{if } K_i^n(b) = \mathsf{true} \\ \mathsf{false} & \text{otherwise} \end{cases}$ $K_i^n(\bigcirc a) = \begin{cases} K_{i+1}^n(a) & \text{if } i < n \\ \text{false} & \text{otherwise} \end{cases}$ $K_i^n(a \ \mathcal{W} \ b) = \begin{cases} \mathbf{true} & \text{if } K_j^n(a) = \mathbf{true}, \text{ for all } i \leq j \leq n \\ \mathbf{true} & \text{if there exists } i \leq k \leq n, \text{ such that } K_k^n(b) = \mathbf{true} \\ & \text{and for every } j \text{ such that } i \leq j < k, K_i^n(a) = \mathbf{true} \end{cases}$ otherwise

Syntactic Sugar

 $always(a) \equiv a wk_until False$ $ever(a) \equiv \neg always(\neg a)$ a until $b \equiv a$ wk_until $b \land ever(b)$ wk_next (a) $\equiv \neg$ next(\neg a) end $\equiv \neg$ next(True)

Linear Temporal Logic over finite traces

Unique Successor next, always, ever, until, etc.

⊢ ever end $T^n = (f_1, ..., f_n)$