
40

Dependently-Typed Data Plane Programming

MATTHIAS EICHHOLZ, Technical University of Darmstadt, Germany

ERIC HAYDEN CAMPBELL, Cornell University, USA
MATTHIAS KREBS, Technical University of Darmstadt, Germany

NATE FOSTER, Cornell University, USA
MIRA MEZINI, Technical University of Darmstadt, Germany

Programming languages like P4 enable specifying the behavior of network data planes in software. However,

with increasingly powerful and complex applications running in the network, the risk of faults also increases.

Hence, there is growing recognition of the need for methods and tools to statically verify the correctness of P4

code, especially as the language lacks basic safety guarantees. Type systems are a lightweight and compositional

way to establish program properties, but there is a significant gap between the kinds of properties that can be

proved using simple type systems (e.g., SafeP4 [Eichholz et al. 2019]) and those that can be obtained using

full-blown verification tools (e.g., p4v [Liu et al. 2018]). In this paper, we close this gap by developing Π4, a
dependently-typed version of P4 based on decidable refinements. We motivate the design of Π4, prove the
soundness of its type system, develop an SMT-based implementation, and present case studies that illustrate

its applicability to a variety of data plane programs.

CCS Concepts: • Software and its engineering → Formal language definitions; • Networks → Pro-
gramming interfaces.

Additional Key Words and Phrases: Software-Defined Networking, P4, Dependent Types

ACM Reference Format:
Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini. 2022. Dependently-

Typed Data Plane Programming. Proc. ACM Program. Lang. 6, POPL, Article 40 (January 2022), 28 pages.

https://doi.org/10.1145/3498701

1 INTRODUCTION
Computer networks are becoming increasingly programmable as languages like P4 [Bosshart et al.

2014] make it possible to specify the behavior of data planes in software. With the increased

availability of programmable devices, a number of powerful and complex applications having

become viable, ranging from novel network protocols to full-blown in-network computation (e.g.,

executing application-level storage queries using network devices [Jin et al. 2017]). But as the

complexity of these applications increases, so does the risk of faults, especially as P4’s main

abstraction for representing packet data—namely header types—lacks basic safety guarantees.

Experience with a growing number of programs has shown the risks of the unsafe approach, which

often leads to subtle software bugs [Eichholz et al. 2019; Liu et al. 2018]. This is clearly unacceptable,

Authors’ addresses: Matthias Eichholz, Technical University of Darmstadt, Germany, eichholz@cs.tu-darmstadt.de; Eric

Hayden Campbell, Cornell University, USA, ehc86@cornell.edu; Matthias Krebs, Technical University of Darmstadt, Ger-

many, krebs@cs.tu-darmstadt.de; Nate Foster, Cornell University, USA, jnfoster@cs.cornell.edu; Mira Mezini, Technical

University of Darmstadt, Germany, mezini@cs.tu-darmstadt.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART40

https://doi.org/10.1145/3498701

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

https://doi.org/10.1145/3498701
https://doi.org/10.1145/3498701

40:2 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

given the crucial role that networks play in nearly all modern systems. Hence, we need methods

and tools to statically verify the correctness of data plane programs.

Today, most data plane verification tools [Dumitrescu et al. 2020; Liu et al. 2018; Stoenescu et al.

2018] are monolithic in nature. For example, p4v [Liu et al. 2018], which is based on software model

checking, operates on whole programs. But while monolithic approaches have certain advantages—

e.g., they minimize the need for programmer annotations—they also have downsides. The most

fundamental limitation is the inherent tension with modular design—it is difficult to accommodate

an “open-world” model, in which third-party components are plugged into existing programs.

For instance, an equipment vendor might want to provide a “base” program that implements

standard packet-processing functionality like Ethernet switching, and allow customers to add

custom functionality of their own design [Baldi 2019; Gao et al. 2020; Soni et al. [n.d.]]. Composable

approaches to data plane programming require compositional reasoning methods [Beckett and

Mahajan 2020].

Type systems are a lightweight and compositional way to establish program properties—i.e., the

types for individual components document assumptions about the components they rely upon as

well as the guarantees they offer. However, somewhat surprisingly, types have rarely been applied in

the realm of network programming, and the few exceptions [Eichholz et al. 2019; Ennals et al. 2004;

Muthukrishnan et al. 2010] are simple type systems with limited expressive power. For example,

SafeP4 [Eichholz et al. 2019] uses regular types [Castagna et al. 2014; Gapeyev and Pierce 2003;

Hosoya and Pierce 2003] and path-sensitive occurrence typing [Tobin-Hochstadt and Felleisen

2010] to reason about basic safety properties, but it cannot capture richer program properties

(e.g., whether the IPv4 and IPv6 headers are only ever accessed on mutually exclusive execution

paths), or track the values of individual fields (e.g., whether EtherType equals to 0x0800, which
indicates an IPv4 packet, or to 0x86DD, which indicates an IPv6 packet). The inability of SafeP4 to

reason about the values being manipulated by the program significantly limits its expressiveness.

In general, there is a significant gap between the kinds of properties that can be checked using

type systems like SafeP4 and full-blown verification tools like p4v.
Thus, it is natural to ask whether we can design a compositional type system that has the

same expressive power as data plane verification tools. This paper answers this question in the

affirmative, by presenting Π4—a dependently-typed version of P4. Π4 fits with the trend of recently

proposed dependently-typed languages [Condit et al. 2007; Rondon et al. 2008; Vazou et al. 2014;

Xi and Pfenning 1999] that are blurring the line between type checking and theorem proving. For

instance, Liquid Haskell [Rondon et al. 2008; Vazou et al. 2014] allows programmers to smoothly

shift from properties that can be checked with traditional typing disciplines to more sophisticated

ones that go beyond simple syntactic checks. Under the hood, Liquid Haskell uses an SMT solver

to automatically discharge the logical proof obligations generated during type checking.

Yet, thus far, the dependently-typed approach has not been explored for network programming.

In this paper, we demonstrate that data plane programs are a “killer application” for dependent types.

On the one hand, they clearly need precise types, as most programs rely on intricate packet formats

(e.g., so-called “type-length-value” encodings, where the first few bits determine the type, length,

and structure of the bits that follow). On the other hand, data plane programs are fundamentally

simple (e.g., P4 does not support pointers or loops) and lack the kinds of complex features that

often make precise type systems complicated to design and implement.

Our main contribution lies in exploring and addressing the subtle challenges that arise in

developing a dependent type system for the P4 programming language, including balancing the

tradeoffs between expressiveness and decidability. Π4 features a combination of refinement types,

dependent function types, union types, and explicit substitutions. This combination is key to retain

precision during type checking—e.g., we can compute exact types for conditionals, thereby having

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:3

access to an accurate type at any program point. Moreover, our design enables precise typing

in the presence of domain-specific features that combine packet serialization and deserialization

operations with imperative control-flow. To this end, Π4 combines a dependent sum type with a

novel “chomp” operation that computes the type that remains after extracting bits from a packet

buffer. We formally prove that Π4’s type system is sound via standard progress and preservation

theorems.

The chomp operator is reminiscent of regular expression derivatives [Brzozowski 1964]. To

the best of our knowledge, with a few notable exceptions (e.g., work by McBride [McBride 2001])

derivative-like operations have not been extensively studied the context of dependent type systems.

Thus, beyond providing an elegant solution to a practical problem, we believe that Π4’s innovative
combination of dependent types with regular types and the possibility to compute derivatives of

types is of general theoretical interest and may be useful in other domains—e.g., one potential

direction is verified serializers and deserializers [Delaware et al. 2019; Ramananandro et al. 2019].

We have built a prototype implementation of Π4 in OCaml and the Z3 SMT solver. The type

checker determines whether a Π4 program has a given type by checking the validity of a series of

logical formulae using an SMT solver. We encode types into the effectively propositional fragment of

first-order logic over fixed-width bit vectors, which facilitates automating subtyping and equivalence

checks. We prove (cf. Theorem 4.1) that this logical fragment is sufficient for checking our types

under the assumption that the types written by the programmer denote finite sets. We believe this

is a reasonable assumption, because networks enforce a maximum transmission unit (MTU) (i.e., a

bound on the size of packets constraining the maximum number of bits that network switches can

receive or transmit
1
) which bounds the size of bit vectors we need to consider in the encoding. In

the presence of an MTU, our types denote finite sets, which can be enumerated to decide the key

judgments (i.e., subtyping, size constraints, and inclusion checks).

Using our Π4 prototype, we develop several case studies, demonstrating that Π4 is capable of
expressing and (modularly) reasoning about properties from the literature ranging from basic safety

to intricate invariants: parser round-tripping, protocol conformance, determined forwarding, etc.

We selected properties that are also studied by recent data plane verification tools like p4v or Vera,

which indicates that Π4 is capable of covering properties of interest to the networking community.

However, we leave a careful study of the practical utility of Π4 (e.g., with larger examples and user

studies) to future work.

Overall, the contributions of our work are as follows:

• Section 2 motivates dependently-typed data plane programming.

• Section 3 presents Π4, a dependently-typed core of P4, featuring a combination expressive

types for describing structures (regular types as well as decidable refinement and dependent

function types) combined with a bit-by-bit “chomp” operator.

• Section 3 develops a semantic proof of soundness for Π4’s type system.

• Section 4 defines a decidable algorithmic type system for Π4.
• Section 5 and Section 6 discusses case studies using Π4’s type system to check realistic

program properties.

2 BACKGROUND
Most networks are based on a division of labor between two components: the control plane and

the data plane. The control plane, usually implemented in software, is responsible for performing

tasks such as learning the topology, computing network-wide forwarding paths, managing shared

1
The MTU is often set to 1500 bytes.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:4 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

1 parser P(packet_in p, out hdrs h) {
2 state start {
3 p.extract(h.ethernet);
4 transition select(
5 h.ethernet.etherType) {
6 0x0800: parse_ipv4;
7 default: accept;
8 }
9 }

10 state parse_ipv4 {
11 p.extract(h.ipv4);
12 transition accept;
13 }
14 }

15 control Ingress(inout hdrs h) {
16 apply {
17 if (h.ipv4.src == 10.10.10.10) {
18 drop();
19 }
20 }
21 }

Fig. 1. Unsafe P4 program: IPv4 is not guaranteed to be valid in the ingress.

resources like bandwidth, and enforcing security policies. The control plane can either be realized

using distributed routing protocols (e.g., in a traditional network), or as a logically-centralized

program (e.g., in a software-defined network). The data plane, often implemented in hardware

or with highly-optimized software, is responsible for forwarding packets. It parses packets into

collections of headers, performs lookups in routing tables, filters traffic using access control lists,

applies queueing policies, and ultimately drops, copies, or forwards the packet to the next device.

P4 is a domain-specific programming language for specifying the behavior of network data planes.

It is designed to be used with programmable devices such as PISA switches [Bosshart et al. 2013],

FPGAs [Ibanez et al. 2019; Wang et al. 2017], or software devices (e.g., eBPF [Høiland-Jørgensen

et al. 2018]). The language is based on a pipeline abstraction: given an input packet it executes a

sequence of blocks of code, one per pipeline component, to produce the outputs. Each pipeline

component is either a “parser,” which consists of a state machine that maps binary packets into

typed representations, or a “control,” which consists of a sequence of imperative commands. To

interface with the control plane, P4 programs may contain “match-action” tables, which contain

dynamically reconfigurable entries, each corresponding to a fixed block of code.

Unfortunately, P4 is an unsafe language that does not prevent programmers from writing

programs such as the one shown in Figure 1. The program begins by parsing the Ethernet header.

Then, if the Ethernet header contains the appropriate EtherType (0x0800), it also parses the IPv4

header. Next, in the ingress control, if the IPv4 source address matches a specified address, the

packet is marked to be dropped. However, there is no guarantee that the IPv4 header will be a

well-defined value—e.g., if the EtherType is 0x08DD, indicating an IPv6 packet, the value produced

by reading the IPv4 source address (Line 17) will be undefined, making the behavior of the program

non-deterministic and possibly different than what the programmer intended.

SafeP4 addresses the lack of basic safety guarantees for P4 using a simple type system [Eichholz

et al. 2019]. Specifically, its type system keeps track of the set of valid header instances at each

statement. For example, starting from the empty heap with no header instances valid, SafeP4

computes the type of the program above to be ether.ipv4 + ether after parsing. This type reflects

that on the first program path both Ethernet and IPv4 are valid, but on the second program path

only Ethernet is valid. Thus, when type checking the if-condition in the ingress code, the type

checker knows that IPv4 may be invalid and rejects the program. A simple fix (shown in Figure 2a)

that makes the program safe is to add an explicit validity check before accessing the IPv4 header.

Because it is aware of the semantics of the isValid command, the SafeP4 type checker computes

the type before the access to be ether.ipv4—i.e., IPv4 is guaranteed to be valid.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:5

1 control Ingress(inout headers h) {
2 apply {
3 if(h.ipv4.isValid ()) {
4 if(h.ipv4.src == 10.10.10.10) {
5 drop();
6 }}}}

(a) Explicit validity check

1 control Ingress(inout headers h) {
2 apply {
3 if(h.ether.etherType == 0x0800) {
4 if(h.ipv4.src == 10.10.10.10) {
5 drop();
6 }}}}

(b) Implicit validity check

Fig. 2. Safe implementation of ingress

In practice, however, relying on explicit validity checks is not sufficient. For example, consider the

code shown in Figure 2b. Recall that, given the parser above, the IPv4 header will be present if the

EtherType is 0x0800. Hence, the ingress control can be safely executed. Yet, SafeP4’s type checker

rejects the program because the type system is not expressive enough to capture the dependency

between the EtherType value and IPv4’s validity.

To address this problem, Π4 employs a dependent type system [Xi and Pfenning 1999], in which

we can compute a precise type for the program after parsing:

(𝑥 : {𝑦 : 𝜖 | |y.pktin | > 272}) →
(
Σ𝑦 : ether.{𝑧 : ipv4 | 𝑦.ether.etherType == 0𝑥0800}
+ {𝑧 : ether | 𝑧.ether.etherType ≠ 0𝑥0800})

)
Intuitively, this type says that, startingwith the empty heap (𝑦 : 𝜖) and a packet buffer that has at least

enough bits to extract both the Ethernet and the IPv4 header (|𝑦.𝑝𝑘𝑡𝑖𝑛 | > 272), the parser ends in one

of two possible states: (1) either both Ethernet and IPv4 are valid (Σ𝑦 : ether.{𝑧 : ipv4 | ...}), if the
EtherType is equal to 0x0800 (note how 𝑧 : ipv4 is conditioned by 𝑦.ether.etherType == 0𝑥0800),

or (2) just Ethernet is valid, if EtherType is not equal to 0x0800. When checking the ingress control,

the type checker uses the predicate ether.etherType == 0x0800 from the conditional to derive

the set of valid header instances, which, in this case, includes IPv4. Thus, accessing the IPv4 source

address is safe and the program correctly passes the type checker.

While the output type is admittedly notationally heavy—a common feature in precise type

systems—note that the programmer is not forced to write down the most precise type! Π4 only
requires the annotated type to be sufficiently precise to capture basic safety guarantees and other

desired invariants. For example, in a program where only the Ethernet header needs to be valid

at the end of the parser, they could use the type (𝑥 : {𝑦 : 𝜖 | |y.pktin | > 272}) → ether~, which
indicates that, at the end of the parser, at least Ethernet is valid (and possibly others, too).

This example illustrates how Π4’s type system statically checks intricate safety properties with

high precision. Sections 5 and 6 present more case studies showing how Π4’s type system can be

used to check practical properties of interest.

3 DEPENDENT TYPES FOR P4 (Π4)
This section introduces the design, syntax, and semantics of Π4, a core calculus modeled after P4

and equipped with dependent types.

3.1 Design of Π4
Π4 focuses on the aspects of the P4 programming language that benefit from dependent types,

(e.g., parsing, deparsing, validity, and control flow) and omits features that add clutter (e.g., externs,

registers, checksums, hashing, and packages). Following p4v [Liu et al. 2018], we do not explicitly

model match-action tables and instead use ghost state and conditionals to encode them (see

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:6 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

Section 6). Consequently, Π4 is a loop-free
2
imperative language with a few domain-specific

primitive commands: extract (𝜄), remit (𝜄), add (𝜄), and reset.
In P4, the emit(𝜄) primitive serializes a header instance 𝜄 into a bitstring and prepends it to the

outgoing packet payload, only if 𝜄 is valid, otherwise it does nothing. To simplify typing rules and

semantics, Π4 provides the primitive remit (𝜄), which really emits 𝜄 if it is valid, and otherwise gets

stuck. Hence, emit(𝜄) can be encoded as syntactic sugar: if (𝜄.valid) then remit (𝜄) else skip. Another
superficial difference is that we model header field accesses as direct bit-slices into the instance (to

avoid another layer of indirection in our semantics)—i.e., eth.srcAddr is written eth[48 : 96].
More substantially, Π4 diverges from P4 in the way it handles instance validity. A header instance

is valid in two cases: (i) if it has been extracted from the packet (which automatically populates

the instance with the appropriate bits) or (ii) if its validity bit has manually been set using the

setValid() method (which does nothing to the instance itself). In P4, reads to uninitialized

variables produce undefined values, so a common programming practice is to follow a call to

setValid()with a sequence of assignments to the header fields—thereby avoiding undefined reads.

In Π4, rather than forcing the programmer to manually write default values, the add (𝜄) command

sets 𝜄.valid to true, and sets 𝜄 a pre-determined default value (say 0).
3
If required, P4’s behavior

could be encoded using an extra 1-bit header to independently track the validity of the instance

and initialization of its fields.

We also introduce a new primitive, reset, which models the behavior of P4 between pipeline

stages. In many switch architectures [Bosshart et al. 2013], packets are deparsed and then reparsed

between pipelines—e.g., after ingress and before egress. The reset command encodes the behavior

of the inner step: it combines the deparsed bits with the packet’s unparsed payload and passes

it along as the input to the next stage. The reset command would also be useful to reason about

invariants across multiple switch programs, although we don’t explore that use in this paper.

Finally, in designing Π4, our primary goal is to enable data plane programmers to make use of

dependent types to verify useful program properties in a compositional way and without having

to write manual proofs. To enable modular reasoning, we need a way to annotate (and modularly

check) programs with types. We annotate a program 𝑐 with a type 𝜎 using an ascription operator:

𝑐 as 𝜎 . The ascription has no effect on the runtime behavior of the code (i.e., 𝑐 as 𝜎 always just

steps to 𝑐). It does, however, indicate a program point where type checking should occur. Hence,

we can independently typecheck 𝑐 at type 𝜎 and then use 𝜎 when checking the rest of the program.

Intuition for Π4’s type system. Next, we give an intuition for Π4’s types. A command 𝑐 is always

assigned a dependent function type (𝑥 : 𝜏1) → 𝜏2, where 𝑥 may occur in 𝜏2. This design allows

us to relate the input and output values of commands expressed in the heap types 𝜏1 and 𝜏2. For
example, we may want to ensure that the Ethernet header has the same value after being deparsed,

reset, and then reparsed. To express equations like this, we use refinement types {𝑦 : 𝜏 | 𝜑}, where
𝜑 is a formula in the logic of variable-width bit vectors with concatenation and length operators.

In this example, we could say that the Ethernet header is unchanged by using the output type

{𝑦 : 𝜏2 | 𝑥 .eth = 𝑦.eth}.
We also often need to reference intermediate formulae, so we introduce substitution types,

written 𝜏2 [𝑥 ↦→ 𝜏1], where 𝑥 may occur in 𝜏2 but not in 𝜏1. In such a type, 𝜏1 may represent the type

at any earlier point in the program. Π4 also supports fine-grained path-dependent reasoning via

union types (𝜏1 + 𝜏2). It is also convenient to have trivial (⊤) and absurd (∅) types.

2
P4 allows loops within parsers, but because programs are restricted to finite state, the language specification allows

implementations to unroll loops.

3
The difference here is similar to the difference between C’s malloc (analogous to P4’s semantics) and calloc (analogous

to Π4’s semantics).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:7

𝜏 ::= ∅ | ⊤ | Σ𝑥 : 𝜏 .𝜏 | 𝜏 + 𝜏 | {𝑥 : 𝜏 | 𝜑} | 𝜏 [𝑥 ↦→ 𝜏] (heap types)

𝜎 ::= N | B | BV | (𝑥 : 𝜏) → 𝜏 (base types)

𝜑 ::= 𝑒 = 𝑒 | 𝑒 > 𝑒 | 𝜑 ∧ 𝜑 | ¬𝜑 | 𝑥 .𝜄.𝑣𝑎𝑙𝑖𝑑 | true | false (formulae)

𝑒 ::= 𝑛 | 𝑏𝑣 | |𝑥 .𝑝 | | 𝑒 + 𝑒 | 𝑒@𝑒 | 𝑥 .𝑝 | 𝑥 .𝑝 [𝑙 :𝑟] | 𝑥 .𝜄 [𝑙 :𝑟] (expressions)

𝑏𝑣 ::= ⟨⟩ | 0 :: 𝑏𝑣 | 1 :: 𝑏𝑣 | bn :: 𝑏𝑣 (bit vectors)

𝑝 ::= 𝑝𝑘𝑡𝑖𝑛 | 𝑝𝑘𝑡𝑜𝑢𝑡 (packets)

𝑐 ::= extract (𝜄) | if (𝜑) c else c | c; c | 𝜄.f := e | remit (𝜄) (commands)

skip | reset | add (𝜄) | 𝑐 as (𝑥 : 𝜏) → 𝜏

𝑑 ::= 𝜂 {𝑓 : BV} | 𝜄 ↦→ 𝜂 (declarations)

𝑃 ::= (𝑑, 𝑐) (programs)

Fig. 3. Syntax of Π4

Finally, the design of our type system is also informed by the need to model parsing operations.

Specifically, we must ensure that the refinements on the input type and on the output type remain

consistent after bits have been shuffled around by a command. For example, given an input type

{𝑥 : ⊤ | 𝑥 .𝑝𝑘𝑡𝑖𝑛 [0 : 8] == 4 ∧ |𝑥 .𝑝𝑘𝑡𝑖𝑛 | > |ipv4|}, where 𝑥 .𝑝𝑘𝑡𝑖𝑛 represents the incoming packet,

and the command extract (ipv4), the output type should reflect that the ipv4 header instance is
now valid, that ipv4[0 : 8] is 4, and that 𝑥 .𝑝𝑘𝑡𝑖𝑛 may have no more bits remaining. Π4 accomplishes

this using two key mechanisms: (1) a dependent sum type Σ𝑥 : 𝜏1 .𝜏2 that computes the disjoint

union of the valid instances in 𝜏1 and 𝜏2 and concatenates the incoming and outgoing packets

(Section 3.3), and (2) a refinement transformer, chomp, that manipulates input refinements to be

consistent with the extraction operation (see Section 3.5).

3.2 Syntax
Figure 3 shows the syntax of Π4. Boolean formulae 𝜑 include literals, equality (=) and validity of

instances (𝑥 .𝜄.valid), conjunction (∧), and negation (¬). Expressions 𝑒 include naturals, bit vectors,
packet length (|𝑥 .𝑝 |), addition (+), concatenation (@), packet access (𝑥 .𝑝) and slices of packets

(𝑥 .𝑝 [𝑙 :𝑟]) and instances (𝑥 .𝜄 [𝑙 :𝑟]).
To ease the notation, we write 𝑥 .𝜄 [𝑙] instead of 𝑥 .𝜄 [𝑙 :𝑙 + 1] for bit-wise access, 𝑥 .𝜄.𝑓 instead of

𝑥 .𝜄 [𝑙 :𝑟] for ranges matching header instance fields, 𝑥 .𝜄 instead of 𝑥 .𝜄 [0 :sizeof (𝜄)], 𝑥 .𝜄 [𝑛 :] for the
remaining bits of 𝑥 .𝜄 starting from bit 𝑛 + 1, and similarly for the corresponding formulae involving

packet variables 𝑥 .𝑝 . We use a list-like encoding of bit vectors. A bit vector is either the empty bit

vector (⟨⟩) or a concatenation of bits. We assume that bit variables bn are not part of the surface
syntax and are only used internally. For singleton bit vectors, we write ⟨𝑏⟩ instead of 𝑏 :: ⟨⟩.

We write 𝜖 ≜ {𝑥 : ⊤ | ∧𝜄∈dom(HT) ¬𝑥 .𝜄.𝑣𝑎𝑙𝑖𝑑} for the type denoting the empty heap on which no

header instances are valid, 𝜄 ≜ {𝑥 : ⊤ | 𝑥 .𝜄.valid∧∧
𝜄′∈dom(HT),𝜄′≠𝜄 ¬𝑥 .𝜄 ′.valid} for the type denoting

the heap exclusively containing instance 𝜄, and 𝜄~ ≜ {𝑥 : ⊤ | 𝑥 .𝜄.valid} for the type denoting the
heap on which at least instance 𝜄 is guaranteed to be valid.

For formulae, we write 𝑥 ≡ 𝑦 (respectively 𝑥 ≡𝜄 𝑦) as syntactic sugar for the boolean predicates

capturing strict equality (respectively instance equality) between the heaps bound to 𝑥 and 𝑦. Strict

equality requires that both the input and output packets are equivalent as well as all instances

contained in the heap—i.e., 𝑥 .𝑝𝑘𝑡𝑖𝑛 = 𝑦.𝑝𝑘𝑡𝑖𝑛 ∧ 𝑥 .𝑝𝑘𝑡𝑜𝑢𝑡 = 𝑦.𝑝𝑘𝑡𝑜𝑢𝑡 ∧
∧

𝜄∈dom(HT) 𝑥 .𝜄 = 𝑦.𝜄, while

instance equality only requires that the instances are equivalent in both heaps. We write 𝑥 .𝜄.valid =

𝑦.𝜄.𝑣𝑎𝑙𝑖𝑑 as syntactic sugar for (𝑥 .𝜄.valid ∧ 𝑦.𝜄.valid) ∨ (¬𝑥 .𝜄.valid ∧ ¬𝑦.𝜄.valid). We use standard

encodings using negation and conjunction for logical connectives like ∨ or ⇒.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:8 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

⟦𝜏⟧E ⊆ H
⟦∅⟧E = {}
⟦⊤⟧E = H

⟦𝜏1 + 𝜏2⟧E = ⟦𝜏1⟧E ∪ ⟦𝜏2⟧E

⟦Σ𝑥 : 𝜏1.𝜏2⟧E = {ℎ1 ++ ℎ2 | ℎ1 ∈ ⟦𝜏1⟧E ∧ ℎ2 ∈ ⟦𝜏2⟧E [𝑥 ↦→ℎ1]}
⟦𝜏1 [𝑥 ↦→ 𝜏2]⟧E = {ℎ | ℎ2 ∈ ⟦𝜏2⟧E ∧ ℎ ∈ ⟦𝜏1⟧E [𝑥 ↦→ℎ2]}
⟦{𝑥 : 𝜏 | 𝜑}⟧E = {ℎ | ℎ ∈ ⟦𝜏⟧E ∧ ⟦𝜑⟧E [𝑥 ↦→ℎ] = true}

Fig. 4. Semantics of heap types

We write 𝑥 as a shorthand for a possibly empty sequence 𝑥1, ..., 𝑥𝑛 . A program consists of a

sequence of declarations 𝑑 and a command 𝑐 . Declarations 𝑑 include header type declarations

𝜂 {𝑓 : BV} and header instance declarations 𝜄 ↦→ 𝜂. Header type declarations specify the format of

network packet headers. They are defined in terms of a name and a sequence of field declarations,

where each field is itself defined in terms of a field name and a type. We write 𝑓 : BV to denote that

field 𝑓 has a bit vector type BV. With 𝜂 ranging over header types, the instance declaration 𝜄 ↦→ 𝜂

assigns the name 𝜄 to header type 𝜂. The global mapping between header instances and header

types is stored in the so-called header tableHT . We assume that names of header instances and

header types are drawn from disjoint sets of names and that each name is declared only once.

Π4 provides commands for parsing (extract), creating (add) and modifying (𝜄.𝑓 := 𝑡) header

instances. The remit command serializes a header instance into a bit sequence. The reset com-

mand resets the program state—in particular, the packet buffers. Commands can be sequentially

composed (𝑐1; 𝑐2), skip is a no-op, and the if -command conditionally executes one out of two

commands based on the value of the boolean formula 𝜑 . We assume that formulae and expressions

used in commands are implicitly prefixed with a variable named heap, but we often omit it in

the surface syntax. For example, we write if (ether.valid) then extract (ipv4) else skip instead of

if (heap.ether.valid) then extract (heap.ipv4) else skip. Π4 provides modular reasoning via type

ascription (𝑐 as (𝑥 : 𝜏1) → 𝜏2). Finally, we assume that every header referenced in a program has a

corresponding instance declaration—this could be enforced statically using a simple analysis.

3.3 Type System
As shown in Figure 3, there are two categories of types, base types 𝜎 and heap types 𝜏 . Base

types include natural numbers, bit vectors, booleans, and dependent function types. Heap types 𝜏

represent sets of heaps, where each element in the set describes a different program path. The goal is

to capture bit-level dependencies between header instances and the incoming and outgoing packet

in the type system. A heap ℎ in the set of heapsH describes a possible system state, consisting of

the incoming and outgoing packet and the set of valid header instances. We model heaps as maps

from names to bit vectors. A heap contains two special entries 𝑝𝑘𝑡𝑖𝑛 and 𝑝𝑘𝑡𝑜𝑢𝑡 representing the

incoming and outgoing packet buffers, as well as mappings from instance names to bit vectors for

each valid header instance. The semantics of types is shown in Figure 4. Heap types are evaluated

in an environment E, which is a mapping from variable names to heaps. The environment models

other heaps available in the current scope upon which the current header type may depend.

The type∅ denotes the empty set. It is used in situationswhere there are unsatisfiable assumptions

involving the header instances or the incoming and outgoing packet buffers.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:9

⟦𝑒⟧E ∈ BV ∪ N

⟦|𝑥 .𝑝 |⟧E =

0 if E(𝑥) (𝑝) = ⟨⟩
𝑛 if E(𝑥) (𝑝) = ⟨𝑏1, ..., 𝑏𝑛⟩
⊥ otherwise

⟦𝑥 .𝑝⟧E =

{
⟨𝑏1, ..., 𝑏𝑛⟩ if E(𝑥) (𝑝) = ⟨𝑏1, ..., 𝑏𝑛⟩
⊥ otherwise

⟦𝑥 .𝑝 [𝑛 :𝑚]⟧E =

⟨𝑏𝑛, ..., 𝑏𝑚−1⟩ if ⟦𝑥 .𝑝⟧E = ⟨𝑏0, ..., 𝑏𝑘⟩ ∧

0 ≤ 𝑛 < 𝑚 ≤ 𝑘 + 1

⊥ otherwise

⟦𝑥 .𝜄 [𝑛 :𝑚]⟧E =

⟨𝑏𝑛, ..., 𝑏𝑚−1⟩ if ⟦𝑥 .𝜄⟧E = ⟨𝑏0, ..., 𝑏𝑘⟩ ∧

0 ≤ 𝑛 < 𝑚 ≤ 𝑘 + 1

⊥ otherwise

Fig. 5. Selected cases of the semantics of expressions

The top type ⊤ denotes the set of all possible heaps. The choice type 𝜏1 + 𝜏2 denotes the union of

the sets of heaps represented by 𝜏1 and 𝜏2. The dependent pair Σ𝑥 : 𝜏1.𝜏2 denotes the concatenation of
heaps from 𝜏1 and 𝜏2, where heaps described by 𝜏2 may depend on heaps from 𝜏1. The concatenation

ℎ = ℎ1 ++ ℎ2 of two heaps ℎ1 and ℎ2 requires that header instances contained in ℎ1 and ℎ2 are

disjoint. The resulting heap contains all instances from ℎ1 and from ℎ2, with 𝑝𝑘𝑡𝑖𝑛 and 𝑝𝑘𝑡𝑜𝑢𝑡 the

concatenation of respective bit vectors in ℎ1 and ℎ2. The explicit substitution 𝜏1 [𝑥 ↦→ 𝜏2] denotes
the set of heaps obtained by evaluating 𝜏1 for every heap described by 𝜏2. Finally, the refinement

type {𝑥 : 𝜏 | 𝑒} denotes the set of heaps described by 𝜏 for which the predicate 𝑒 holds.

The refinement predicate 𝜑 is evaluated in the same type of environment as heap types. Formulae

evaluate to a boolean value, i.e., ⟦𝜑⟧E ∈ B. The semantics of expression equality (𝑒1 = 𝑒2) is defined

as the semantic equality between expressions 𝑒1 and 𝑒2. If the semantics of one of the expressions is

undefined, expression equality always evaluates to false. The semantics of expression comparison

(𝑒1 > 𝑒2) is defined analogously. Instance validity 𝑥 .𝜄.valid evaluates to true if header instance 𝜄 is

contained in the heap bound to 𝑥 in E, otherwise it evaluates to false. The remaining operations

have standard semantics.

The semantics of expressions is defined in Figure 5. For brevity, we omit standard cases. Ex-

pressions evaluate to either a bit vector or a natural number. For the semantic addition (+) and bit

vector concatenation operator (@), we assume that as soon as evaluating one operand results in

an error (⊥) the whole expression also evaluates to ⊥. To evaluate the length of a packet |𝑥 .𝑝 |, we
compute the length of the bit vector of 𝑝𝑘𝑡𝑖𝑛 or 𝑝𝑘𝑡𝑜𝑢𝑡 respectively in the heap bound to 𝑥 in the

environment. If no heap is bound to variable name 𝑥 , the expression evaluates to ⊥. The semantics

of bit vectors is as expected, except for variables, which we look up from a designated location in

the environment. If no binding for the bit variable exists, it evaluates to ⊥. The semantics of bit

vector concatenation is standard. A packet access 𝑥 .𝑝 looks up the respective entry from the heap

bound to variable 𝑥 in E. A packet slice 𝑥 .𝑝 [𝑙 :𝑟] is evaluated in the same way, but additionally the

designated slice is obtained from the bit vector. Again, if the variable is not bound or an index is

greater than the length of the bit vector, the expression evaluates to ⊥. The semantics of instance

slices 𝑥 .𝜄 [𝑙 :𝑟] is defined similarly but the lookup occurs on header instance 𝜄. We interpret slices as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:10 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

E-Extract

HT (𝜄) = 𝜂 deserialize𝜂 (𝐼) = (𝑣, 𝐼 ′)
⟨𝐼 ,𝑂, 𝐻, extract (𝜄)⟩ → ⟨𝐼 ′,𝑂, 𝐻 [𝜄 ↦→ 𝑣], skip⟩

E-Remit

𝜄 ∈ 𝑑𝑜𝑚(𝐻) HT (𝜄) = 𝜂

serialize𝜂 (𝐻 (𝜄)) = 𝑏𝑣

⟨𝐼 ,𝑂, 𝐻, remit (𝜄)⟩ → ⟨𝐼 ,𝑂 :: 𝑏𝑣, 𝐻, skip⟩

E-Mod

𝐻 (𝜄) = 𝑟 𝑟 ′ ≜ {𝑟 𝑤𝑖𝑡ℎ 𝑓 = 𝑣}
⟨𝐼 ,𝑂, 𝐻, 𝜄.𝑓 := 𝑣⟩ → ⟨𝐼 ,𝑂, 𝐻 [𝜄 ↦→ 𝑟 ′], skip⟩

E-Reset

𝐼 ′ = 𝑂@𝐼

⟨𝐼 ,𝑂, 𝐻, reset⟩ → ⟨𝐼 ′, ⟨⟩, [], skip⟩

E-Add

𝜄 ∉ dom(𝐻) HT (𝜄) = 𝜂 init𝜂 = 𝑣

⟨𝐼 ,𝑂, 𝐻, add (𝜄)⟩ → ⟨𝐼 ,𝑂, 𝐻 [𝜄 ↦→ 𝑣], skip⟩

E-Ascribe

⟨𝐼 ,𝑂, 𝐻, 𝑐 as (𝑥 : 𝜏1) → 𝜏2⟩ → ⟨𝐼 ,𝑂, 𝐻, 𝑐⟩

Fig. 6. Small-step operational semantics of Π4

half-open intervals, where the left bound is included and the right bound is excluded. For example,

given a bit vector 𝑏𝑣 = 1010 we have 𝑏𝑣 [1 :4] = 010.

We define two semantic operations on heap types: inclusion and exclusion of instances. The first,

Includes Γ 𝜏 𝜄, traverses 𝜏 and checks that instance 𝜄 is valid in every path. Semantically this says

that 𝜄 is a member of every element of ⟦𝜏⟧E—i.e., if E |= Γ, then ∀ℎ ∈ ⟦𝜏⟧E .𝜄 ∈ 𝑑𝑜𝑚(ℎ). The second,
Excludes Γ 𝜏 𝜄, traverses 𝜏 and checks that instance 𝜄 is invalid in every path. Semantically this says

that 𝜄 is no member of every element of ⟦𝜏⟧E—i.e., if E |= Γ, then ∀ℎ ∈ ⟦𝜏⟧E .𝜄 ∉ 𝑑𝑜𝑚(ℎ).

3.4 Operational semantics
The small-step operational semantics ofΠ4, is shown in Figure 6. It is defined in terms of a four-tuple

⟨𝐼 ,𝑂, 𝐻, 𝑐⟩, where 𝐼 and 𝑂 are the bitstrings for the incoming and outgoing packets respectively, 𝐻

is a map that relates instance names to records containing the field values, and 𝑐 is a command.

The extract (𝜄) command (E-Extract) first looks up the header type from the header table (HT),

and uses a deserialization function to copy the appropriate number of bits from the input packet

into the deserialized representation of the instance 𝑣 . This value is added to the map of valid

header instances 𝐻 . We assume there exists a deserialization function for every header instance.

For example, assuming 𝐼 = 110011𝐵, where 𝐵 is the rest of the bitstring, and 𝜂 = {𝑓 : 4;𝑔 : 2}, then
deserialize𝜂 (𝐼) = ({𝑓 = 1100;𝑔 = 11}, 𝐵).
The remit (𝜄) command (rule E-Remit) requires that the header instance is valid—i.e., it is con-

tained in 𝐻 . Similar to E-Extract, we assume there is a serialization function for every heap

type, which turns a record representing the instance back into a bit sequence. For example,

serialize𝜂 ({𝑓 = 1100;𝑔 = 11}) = 11011. The serialized bit sequence is appended to the end of

the outgoing packet. Both the input packet and the set of valid headers remain unchanged.

The rule E-Mod defines the semantics of assigning a value to a header field. Assuming 𝑟 is the

record storing the values of the fields, an updated record 𝑟 ′ with the modified field value is stored

in 𝐻 . The input and output packets remain unchanged. If the assigned expression is not a value, it

is reduced first.

The rules for sequencing (E-Seq, E-Seq1) are standard. Sequences of commands evaluate from

left to right—i.e., the left-hand command is reduced to skip before the right-hand command is

evaluated. The evaluation rules for conditionals (E-If, E-IfTrue, E-IfFalse) are also standard. All

standard rules are omitted.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:11

The rule E-Reset defines the semantics of the command reset. It would be invoked between the

ingress and egress pipelines, when the packet emitted by the ingress becomes the input packet for

the egress. Operationally, the bits contained in the output packet are prepended to the bits of the

input packet. This concatenated bit sequence serves as the new input packet. The output packet is

emptied and all valid header instances are discarded.

The rule E-Add initializes a header instance if it is not already valid. The evaluation is similar to

rule E-Extract, except that no bits are taken from the input bitstring. Instead we assume that there

exists an initialization function init𝜂 for every heap type 𝜂 —similar to deserialize—that initializes
all fields of an instance to a fixed value. If an instance is already valid, this operation is a no-op. An

ascribed command 𝑐 as 𝜎 (rule E-Ascribe) evaluates to 𝑐 trivially, without modifying the heap.

3.5 Typing Judgement
The typing judgement has the form Γ ⊢ 𝑐 : (𝑥 : 𝜏1) → 𝜏2. Intuitively, type 𝜏1 describes the input

heap and 𝜏2 describes the output heap obtained after the execution of 𝑐 . Γ is a variable context that

maps variable names to heap types and is used to capture additional dependencies of the input

type. If a command typechecks in a context where 𝑥 maps to 𝜏 (i.e., Γ, 𝑥 : 𝜏 ⊢ 𝑐 : (𝑥 : 𝜏1) → 𝜏2) it

means that given some heap described by type 𝜏 on which the input heap might depend, executing

𝑐 on the input heap described by 𝜏1 will result in a heap described by 𝜏2.

The typing rules are presented in Figure 7. The typing rule T-Extract captures that 𝜄 must be

valid after an extract command is executed and the input packet of type 𝜏1 provides enough bits for

the instance (sizeof𝑝𝑘𝑡𝑖𝑛 (𝜏) ≥ 𝑛 iff ∀E, ℎ ∈ ⟦𝜏⟧E, |ℎ(𝑝𝑘𝑡𝑖𝑛) | ≥ 𝑛). Intuitively, the chomp operator

ensures that the output type reflects that the first 𝑛 bits, where 𝑛 is the number of bits contained in

header instance 𝜄, are removed from the input packet and copied into instance 𝜄.

The typing rule for sequencing T-Seq is mostly standard, with one peculiarity: because our

typing judgement assigns dependent function types to commands, the result type 𝜏22 of command

𝑐2 might depend on its input type 𝜏12—i.e., variable 𝑦 might appear free in 𝜏22. Hence, we must also

capture the type 𝜏12 in the result type. The typing rule T-Skip is standard, except that it strictly

enforces that the heaps described by the output type are equivalent to the heaps described by

the input type. To typecheck the command remit, we check whether the instance to be emitted is

guaranteed to be valid in the input type. The assigned output type ensures that emitting a header

instance appends the value of the instance to the end of the outgoing packet (second projection of

the assigned Σ-type) but leaves the input packet and all other validity information unchanged (first

projection of the assigned Σ-type). The rule T-Reset resets all assumptions about header validity,

empties 𝑝𝑘𝑡𝑜𝑢𝑡 and refines 𝑝𝑘𝑡𝑖𝑛 to be the concatenation of 𝑝𝑘𝑡𝑜𝑢𝑡 and 𝑝𝑘𝑡𝑖𝑛 of the input type. In

the output type, we use a Σ-type to model the concatenation.

The rule T-If typechecks each branch of the conditional with the additional assumption that

the condition 𝜑 holds respectively does not hold. The resulting type is a path-sensitive union type,

which includes the types of both paths. By default, all variables in formula 𝜑 in the command

are bound to heap. To turn 𝜑 into a refinement on a type, we substitute every occurrence of

heap with the respective binder of the type we want to refine. We write 𝜑 [𝑥/heap] to denote

the formula obtained from 𝜑 in which heap is replaced with 𝑥 . For example, if the command is

if (ether.etherType = 0x0800) then extract (ipv4) else skip, we typecheck the then-branch with

type (𝑥 : {𝑦 : 𝜏1 | 𝑦.ether.etherType = 0x0800}) → 𝜏12. The full command is checked with type

(𝑥 : 𝜏1) → {𝑦 : 𝜏12 | 𝑥 .ether.etherType = 0x0800} + {𝑦 : 𝜏22 | ¬𝑥 .ether.etherType = 0x0800}.
To typecheck a modification of an instance field, the typing rule T-Mod first checks if the instance

to be modified is guaranteed to be valid in the input type. The output type is similar to the strongest-

postcondition of the input type: everything in the output type is the same as in 𝑥 , except for the

modified instance field 𝑦.𝜄.𝑓 , which must be equal to 𝑒 [𝑥/heap].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:12 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

T-Extract

Γ ⊢ sizeof𝑝𝑘𝑡𝑖𝑛 (𝜏1) ≥ sizeof (𝜄) 𝜑1 ≜ 𝑧.𝑝𝑘𝑡𝑖𝑛 = 𝑧.𝑝𝑘𝑡𝑜𝑢𝑡 = ⟨⟩
𝜑2 ≜ 𝑦.𝜄@𝑧.𝑝𝑘𝑡𝑖𝑛 = 𝑥 .𝑝𝑘𝑡𝑖𝑛 ∧ 𝑧.𝑝𝑘𝑡𝑜𝑢𝑡 = 𝑥 .𝑝𝑘𝑡𝑜𝑢𝑡 ∧ 𝑧 ≡𝜄 𝑥

Γ ⊢ extract (𝜄) : (𝑥 : 𝜏1) → Σ𝑦 : {𝑧 : 𝜄 | 𝜑1}.{𝑧 : chomp(𝜏1, 𝜄, 𝑦) | 𝜑2}

T-Seq

Γ ⊢ 𝑐1 : (𝑥 : 𝜏1) → 𝜏12
Γ, 𝑥 : 𝜏1 ⊢ 𝑐2 : (𝑦 : 𝜏12) → 𝜏22

Γ ⊢ 𝑐1; 𝑐2 : (𝑥 : 𝜏1) → 𝜏22 [𝑦 ↦→ 𝜏12]

T-Skip

𝜏2 ≜ {𝑦 : 𝜏1 | 𝑦 ≡ 𝑥}
Γ ⊢ skip : (𝑥 : 𝜏1) → 𝜏2

T-Remit

Includes Γ 𝜏1 𝜄 𝜑 ≜ 𝑧.𝑝𝑘𝑡𝑖𝑛 = ⟨⟩ ∧ 𝑧.𝑝𝑘𝑡𝑜𝑢𝑡 = 𝑥 .𝜄

Γ ⊢ remit (𝜄) : (𝑥 : 𝜏1) → Σ𝑦 : {𝑧 : 𝜏1 | 𝑧 ≡ 𝑥}.{𝑧 : 𝜖 | 𝜑}

T-Reset

𝜑1 ≜ 𝑧.𝑝𝑘𝑡𝑜𝑢𝑡 = ⟨⟩ ∧ 𝑧.𝑝𝑘𝑡𝑖𝑛 = 𝑥 .𝑝𝑘𝑡𝑜𝑢𝑡
𝜑2 ≜ 𝑧.𝑝𝑘𝑡𝑜𝑢𝑡 = ⟨⟩ ∧ 𝑧.𝑝𝑘𝑡𝑖𝑛 = 𝑥 .𝑝𝑘𝑡𝑖𝑛

Γ ⊢ reset : (𝑥 : 𝜏1) → Σ𝑦 : {𝑧 : 𝜖 | 𝜑1}.{𝑧 : 𝜖 | 𝜑2}

T-Ascribe

Γ ⊢ 𝑐 : 𝜎
Γ ⊢ 𝑐 as 𝜎 : 𝜎

T-If

·;𝜏 ⊢ 𝜑 : B
Γ ⊢ 𝑐1 : (𝑥 : {𝑦 : 𝜏1 | 𝜑 [𝑦/heap]}) → 𝜏12 Γ ⊢ 𝑐2 : (𝑥 : {𝑦 : 𝜏1 | ¬𝜑 [𝑦/heap]}) → 𝜏22

Γ ⊢ if (𝜑) c1 else c2 : (𝑥 : 𝜏1) → {𝑦 : 𝜏12 | 𝜑 [𝑥/heap]} + {𝑦 : 𝜏22 | ¬𝜑 [𝑥/heap]}

T-Mod

Includes Γ 𝜏1 𝜄
F (𝜄, 𝑓) = BV ·;𝜏1 ⊢ 𝑒 : BV 𝜑𝑝𝑘𝑡 ≜ 𝑦.𝑝𝑘𝑡𝑖𝑛 = 𝑥 .𝑝𝑘𝑡𝑖𝑛 ∧ 𝑦.𝑝𝑘𝑡𝑜𝑢𝑡 = 𝑥 .𝑝𝑘𝑡𝑜𝑢𝑡

𝜑𝜄 ≜ ∀𝜅 ∈ dom(HT). 𝜄 ≠ 𝜅 → 𝑦.𝜅 = 𝑥 .𝜅 ∧ 𝜑 𝑓 ≜ ∀𝑔 ∈ dom(HT (𝜄)) . 𝑓 ≠ 𝑔 → 𝑦.𝜄.𝑔 = 𝑥 .𝜄.𝑔

Γ ⊢ 𝜄.𝑓 := 𝑒 : (𝑥 : 𝜏1) → {𝑦 : ⊤ | 𝜑𝑝𝑘𝑡 ∧ 𝜑𝜄 ∧ 𝜑 𝑓 ∧ 𝑦.𝜄.𝑓 = 𝑒 [𝑥/heap]}

T-Add

Excludes Γ 𝜏1 𝜄 initHT(𝜄) = 𝑣

𝜑 ≜ 𝑧.𝑝𝑘𝑡𝑖𝑛 = 𝑧.𝑝𝑘𝑡𝑜𝑢𝑡 = ⟨⟩ ∧ 𝑧.𝜄 = 𝑣

Γ ⊢ add (𝜄) : (𝑥 : 𝜏1) → Σ𝑦 : {𝑧 : 𝜏1 | 𝑧 ≡ 𝑥}.{𝑧 : 𝜄 | 𝜑}

T-Sub

Γ ⊢ 𝜏1 <: 𝜏3
Γ, 𝑥 : 𝜏1 ⊢ 𝜏4 <: 𝜏2

Γ ⊢ 𝑐 : (𝑥 : 𝜏3) → 𝜏4

Γ ⊢ 𝑐 : (𝑥 : 𝜏1) → 𝜏2

Fig. 7. Command typing rules for Π4.

Rule T-Add first checks that the instance is not yet included in the type and assigns an output

type that reflects that all information from the input type 𝜏1 are retained and just instance 𝜄 is added.

The typing rule for ascription T-Ascribe is standard. The typing rule for subsumption T-Sub is also

standard. We write Γ ⊢ 𝜏1 <: 𝜏2 to denote the subtyping check between 𝜏1 and 𝜏2. The contexts Γ1
and Γ2 capture external dependencies of 𝜏1 and 𝜏2 respectively.
We take a semantic approach for defining subtyping as shown in the left of Figure 8. Type 𝜏1

with context Γ1 is a subtype of type 𝜏2 with context Γ2, if and only if for all environments E1 and E2

such that E1 entails the context Γ1 for subtype 𝜏1 and E2 entails the context Γ2 for supertype 𝜏2, the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:13

Γ ⊢ 𝜏1 <: 𝜏2
Δ⇔ ∀E |= Γ.⟦𝜏1⟧E ⊆ ⟦𝜏2⟧E E |= Γ

Δ⇔ ∀𝑥𝑖 ∈ dom(Γ).E(𝑥𝑖) = ℎ𝑖 ∧ ℎ𝑖 |=E Γ(𝑥𝑖)

Fig. 8. Left: Subtyping. Right: Entailment between environments and subtyping contexts.

Ent-Top

(𝐼 ,𝑂, 𝐻) |=E ⊤

Ent-ChoiceL

(𝐼 ,𝑂, 𝐻) |=E 𝜏1

(𝐼 ,𝑂, 𝐻) |=E 𝜏1 + 𝜏2

Ent-ChoiceR

(𝐼 ,𝑂, 𝐻) |=E 𝜏2

(𝐼 ,𝑂, 𝐻) |=E 𝜏1 + 𝜏2

Ent-Refine

(𝐼 ,𝑂, 𝐻) |=E 𝜏

⟦𝜑⟧E [𝑥 ↦→(𝐼 ,𝑂,𝐻)] = true

(𝐼 ,𝑂, 𝐻) |=E {𝑥 : 𝜏 | 𝜑}

Ent-Sigma

(𝐼1,𝑂1, 𝐻1) |=E 𝜏1
(𝐼2,𝑂2, 𝐻2) |=E [𝑥 ↦→(𝐼1,𝑂1,𝐻1)] 𝜏2

(𝐼1@𝐼2,𝑂1@𝑂2, 𝐻1 ∪ 𝐻2) |=E Σ𝑥 : 𝜏1.𝜏2

Ent-Subst

(𝐼2,𝑂2, 𝐻2) |=E 𝜏2
(𝐼 ,𝑂, 𝐻) |=E [𝑥 ↦→(𝐼2,𝑂2,𝐻2)] 𝜏1

(𝐼 ,𝑂, 𝐻) |=E 𝜏1 [𝑥 ↦→ 𝜏2]

Fig. 9. Entailment between heaps and heap types.

set of heaps described by 𝜏1 evaluated in environment E1 is a subset of the set of heaps described

by 𝜏2 evaluated in environment E2.

The entailment between environments and typing contexts is defined in the right of Figure 8.

An environment E entails a context Γ, iff for every mapping from a variable name 𝑥𝑖 to some heap

type 𝜏𝑖 in Γ there exists a mapping from variable 𝑥𝑖 to some heap ℎ𝑖 in environment E and that

heap ℎ𝑖 entails type 𝜏𝑖 . The entailment between a heap and a type is defined in Figure 9. A heap

𝐻 [𝑝𝑘𝑡𝑖𝑛 ↦→ 𝐼 , 𝑝𝑘𝑡𝑜𝑢𝑡 ↦→ 𝑂], in short (𝐼 ,𝑂, 𝐻) entails a type 𝜏 , if it is contained in the type.

3.6 Chomp
When an instance 𝜄 is extracted, sizeof (𝜄) bits are moved from the input bitstring to the instance—we

call this chomping. To reflect it in the type that we assign to an extract command, we define a

syntactic operation chomp that transforms a heap type into the heap type that would result from

extracting an instance.

We first specify a semantic chomp operation on a single heap (chomp⇓ (ℎ, 𝑛)) in Definition 3.1—it

removes the first 𝑛 bits from the input packet in heap ℎ.

Definition 3.1 (Semantic Chomp). chomp⇓ (ℎ, 𝑛) = ℎ[𝑝𝑘𝑡𝑖𝑛 ↦→ ℎ(𝑝𝑘𝑡𝑖𝑛) [𝑛 :]]

Intuitively, syntactic chomp lifts chomp⇓ to heap types (written formally in Lemma 3.2). For

example, given a header instance A of type A_t { f: 2 }, chomp({𝑥 : 𝜖 | 𝑥 .𝑝𝑘𝑡𝑖𝑛 [0 : 2] =

11}, 𝐴,𝑦) = {𝑥 : 𝜖 | 𝑦.𝐴[0 :2] = 11}, i.e., because header instance A contains two bits, the first two

bits are moved from 𝑝𝑘𝑡𝑖𝑛 to instance A, bound by 𝑦. It turns out that we can define chomp via

a simple syntactic transformation. To do this, we first define a single-bit operation, chomp
1
, that

processes only a single bit. Then chomp recursively lifts chomp
1
to the appropriate length.

3.6.1 Chomp1. To chomp a single bit from a heap type, we will need to update all references to the

length, as well as to the first bit of 𝑝𝑘𝑡𝑖𝑛 . This computation resembles Brzozowski derivatives [Brzo-

zowski 1964]. For the complete definition of chomp
1
, we refer the reader to the companion technical

report. Here we provide some intuition for how it works. Semantically, chomp
1
(𝜏, b0) transforms

for each heap ℎ denoted by a heap type 𝜏 , into the heap ℎ[𝑝𝑘𝑡𝑖𝑛 ↦→ ℎ(𝑝𝑘𝑡𝑖𝑛) [1 :]]. The variable b0
is a placeholder corresponding to the missing bit. Then, a helper function heapRef

1
replaces the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:14 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

placeholder bits introduced by chomp
1
with references to the extracted bit. In particular, the 𝑖-th

call to heapRef
1
, replaces variable bi with 𝑥 .𝜄 [𝑖 − 1 :𝑖].

Syntactically, when chomping a heap type 𝜏 we update each occurrence of 𝑝𝑘𝑡𝑖𝑛 in a refinement,

if that occurrence describes the first bit of 𝑝𝑘𝑡𝑖𝑛 of a heap in the semantics of 𝜏 . Types ∅ and ⊤ are

not affected by chomping. For a choice type 𝜏1 +𝜏2, chomp
1
is applied to both 𝜏1 and 𝜏2 individually,

as each branch of the choice type describes isolated heaps of 𝜏 . In the substitution type, 𝜏1 [𝑥 ↦→ 𝜏2],
only 𝜏1 is chomped, as 𝜏2 only captures information relevant for evaluating refinements.

For the refinement type {𝑥 : 𝜏1 | 𝜑}, chomp is applied recursively to 𝜏1 and all references to

the first bit of 𝑝𝑘𝑡𝑖𝑛 as well as the length of 𝑝𝑘𝑡𝑖𝑛 are updated accordingly. We increment numeric

expressions referencing 𝑥 .𝑝𝑘𝑡𝑖𝑛 (e.g. the refinement |𝑥 .𝑝𝑘𝑡𝑖𝑛 | becomes |𝑥 .𝑝𝑘𝑡𝑖𝑛 | + 1 and we prepend

the placeholder bit bn for bit-vector expressions referencing 𝑥 .𝑝𝑘𝑡𝑖𝑛).
When we apply chomp

1
to type Σ𝑥 : 𝜏1.𝜏2, we have to distinguish two cases, either the input

packet described by 𝜏1 contains at least one bit or the input packet described by 𝜏1 is empty. In the

first case, chomp
1
removes the first bit of 𝑝𝑘𝑡𝑖𝑛 in 𝜏1 and in the second case it removes the first bit

of 𝑝𝑘𝑡𝑖𝑛 in 𝜏2. If we chomp in 𝜏1 we need to update all refinements to 𝑥 .𝑝𝑘𝑡𝑖𝑛 in 𝜏2, as 𝜏1 is bound to

𝑥 in 𝜏2; otherwise chomping could cause contradictions between refinements referencing the same

component. Similar to the computation of a Brzozowski derivative of a product, the result is the

union of the type obtained by chomping 𝜏1 and 𝜏2 respectively, where we additionally assert in the

second case that 𝑝𝑘𝑡𝑖𝑛 of 𝜏1 must be empty.

Example. Given type 𝜏 = Σ𝑥 : {𝑦 : 𝜖 | |𝑦.𝑝𝑘𝑡𝑖𝑛 | = 1}.{𝑧 : 𝜖 | |𝑥 .𝑝𝑘𝑡𝑖𝑛 | = 1}
chomp

1
(𝜏, b0) = Σ𝑥 : {𝑦 : 𝜖 | |𝑦.𝑝𝑘𝑡𝑖𝑛 | + 1 = 1}.{𝑧 : 𝜖 | |𝑥 .𝑝𝑘𝑡𝑖𝑛 | + 1 = 1} +

Σ𝑥 : {𝑦 : 𝜖 | |𝑦.𝑝𝑘𝑡𝑖𝑛 | = 1 ∧ |𝑦.𝑝𝑘𝑡𝑖𝑛 | = 0}.{𝑧 : 𝜖 | |𝑥 .𝑝𝑘𝑡𝑖𝑛 | = 1}

Example. Given a type 𝜏 = {𝑥 : {𝑦 : 𝜄 | |𝑦.𝑝𝑘𝑡𝑖𝑛 | = 8} | 𝑥 .𝑝𝑘𝑡𝑖𝑛 [0 :8] = 𝑥 .𝜄 [4 : 12]}
chomp

1
(𝜏, 𝑏0) = {𝑥 : {𝑦 : 𝜄 | |𝑦.𝑝𝑘𝑡𝑖𝑛 | + 1 = 8} | 𝑏0 :: 𝑥 .𝑝𝑘𝑡𝑖𝑛 [0 :7] = 𝑥 .𝜄 [4 : 12]}

Example. Given a header instance 𝐴 and a heap type 𝜏 = {𝑥 : 𝜖 | b0 :: ⟨⟩@𝑥 .𝑝𝑘𝑡𝑖𝑛 [0] = 10}. The
first call to heapRef

1
returns type {𝑥 : 𝜖 | (𝑦.𝜄 [0]@⟨⟩)@𝑥 .𝑝𝑘𝑡𝑖𝑛 [0] = 10}.

3.6.2 Correctness of Chomp. We prove that chomp is correct with respect to chomp⇓. Specifically,
Lemma 3.2 states that—given some heap ℎ ∈ ⟦𝜏⟧E—there exists a corresponding heap ℎ′

in the

semantics of the chomped type that is equivalent to the heap obtained after applying chomp⇓ to ℎ.
Since chomp adds a refinement on 𝑥 .𝜄, we evaluate the chomped type in an environment, where 𝑥

maps to the heap in which 𝜄 contains the first sizeof (𝜄) bits from ℎ(𝑝𝑘𝑡𝑖𝑛). This reflects the intuition
that chomp populates the header instance 𝜄 with the first sizeof (𝜄) bits from the input packet.

Lemma 3.2 (Semantic Chomp). If 𝑥 does not appear free in 𝜏 , then for all heaps ℎ ∈ ⟦𝜏⟧E where
|ℎ(𝑝𝑘𝑡𝑖𝑛) | ≥ sizeof (𝜄), there exists ℎ′ ∈ ⟦chomp(𝜏, 𝜄, 𝑥)⟧E′ such that ℎ′ = chomp⇓ (ℎ, sizeof (𝜄))
where E ′ = E[𝑥 ↦→ (⟨⟩, ⟨⟩, [𝜄 ↦→ ℎ(𝑝𝑘𝑡𝑖𝑛) [0 : sizeof (𝜄)]])].

3.7 Safety of Π4
We prove safety of Π4 in terms of standard progress and preservation theorems. That is, well-typed

programs do not get stuck and when well-typed programs are evaluated, they remain well typed.

Both theorems make use of the entailment relation defined in Figure 9.

Theorem 3.3 (Progress). If · ⊢ 𝑐 : (𝑥 : 𝜏1) → 𝜏2 and (𝐼 ,𝑂, 𝐻) |= 𝜏1, then either 𝑐 = skip or
∃⟨𝐼 ′,𝑂 ′, 𝐻 ′, 𝑐 ′⟩.⟨𝐼 ,𝑂, 𝐻, 𝑐⟩ → ⟨𝐼 ′,𝑂 ′, 𝐻 ′, 𝑐 ′⟩.

Proof. By induction on the typing derivation. For details, see the companion technical report. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:15

As usual, progress says that if a command is well-typed, it is either skip or can take a step.

Theorem 3.4 (Preservation). If Γ ⊢ 𝑐 : (𝑥 : 𝜏1) → 𝜏2, ⟨𝐼 ,𝑂, 𝐻, 𝑐⟩ → ⟨𝐼 ′,𝑂 ′, 𝐻 ′, 𝑐 ′⟩, and E |= Γ
and (𝐼 ,𝑂, 𝐻) |=E 𝜏1, then there exists Γ′, E ′, 𝑥 ′, 𝜏 ′

1
, 𝜏 ′

2
, such that Γ′ ⊢ 𝑐 ′ : (𝑥 ′

: 𝜏 ′
1
) → 𝜏 ′

2
and E ′ |= Γ′

and (𝐼 ′,𝑂 ′, 𝐻 ′) |=E′ 𝜏 ′
1
and ⟦𝜏 ′

2
⟧E′ [𝑥 ′ ↦→(𝐼 ′,𝑂′,𝐻 ′)] ⊆ ⟦𝜏2⟧E [𝑥 ↦→(𝐼 ,𝑂,𝐻)]

Proof. By induction on the typing derivation. For details, see the companion technical report. □

The preservation theorem says that if a command is a well-typed command 𝑐 that can step to 𝑐 ′,
and a heap entails the input type 𝜏1, then 𝑐

′
is well-typed from 𝜏 ′

1
to 𝜏 ′

2
for some 𝜏 ′

1
and 𝜏 ′

2
such that

the final heap entails 𝜏 ′
1
and the set of heaps described by 𝜏 ′

2
is a subset of the heaps denoted by 𝜏2

with their respective input heaps bound to variable 𝑥 .

4 IMPLEMENTATION
We have built a prototype implementation of Π4’s type system in OCaml and Z3. Under the hood,

it uses an encoding of Π4’s types into a decidable theory of first-order logic, facilitating use of an

SMT solver to automatically discharge the various side conditions that arise during type checking.

We describe the algorithmic type system and its decidability, some optimizations we use to simplify

our types, and our P416 frontend.

4.1 Algorithmic Type System and Decidability
For our implementation, we define an algorithmic version of our type systemwhose rules are mostly

identical to the rules from our declarative type system. Figure 10 shows two selected algorithmic

typing rules that demonstrate the key differences from our declarative system. Many of the typing

rules have semantic conditions that must be checked during type checking. In the algorithmic type

system, we encode these constraints as subtype constraints. For example, when we type-check

the command add (𝜄), we must check that the newly added instance is not already valid in the

input type 𝜏1, i.e., Excludes Γ 𝜏1 𝜄. As shown by rule T-Add-Algo in Figure 10, Excludes Γ 𝜏1 𝜄

becomes the subtype check Γ ⊢ 𝜏1 <: {𝑥 : ⊤ | ¬𝑥 .𝜄.valid}. Similarly, rule T-Mod and T-Remit

require Includes Γ 𝜏1 𝜄, which becomes Γ ⊢ 𝜏1 <: {𝑥 : ⊤ | 𝑥 .𝜄.valid} in T-Mod-Algo and T-

Remit-Algo respectively. The check sizeof𝑝𝑘𝑡𝑖𝑛 (𝜏) ≥ sizeof (𝜄) required by T-Extract becomes

Γ ⊢ 𝜏1 <: {𝑥 : ⊤ | |𝑥 .𝑝𝑘𝑡𝑖𝑛 | ≥ sizeof (𝜄)} in rule T-Extract-Algo.

The second major difference is the rule for type ascription T-Ascribe-Algo. In our implemen-

tation we check if the input type 𝜏 ′
1
is a subtype of the ascribed input type 𝜏1. We then use the

ascribed input type to compute an output type 𝜏2. Finally, we check if the computed output type

is a subtype of the ascribed output type. Note, that our type checking algorithm can be used to

obtain a weak form of type inference. Given an input type that describes the state before the

execution, our algorithm computes an output type, which describes the state after the execution

of the program. However, a full-blown treatment of type reconstruction (such as the one used by

Liquid Haskell [Vazou et al. 2018]) is left for future work.

We convert every check Γ ⊢ 𝜏1 <: 𝜏2 into a formula in the theory of fixed-width bit vectors. This

is largely straightforward, except for the encoding of 𝑝𝑘𝑡𝑖𝑛 and 𝑝𝑘𝑡𝑜𝑢𝑡 , which may be arbitrarily

long. However, network switches have a maximum number of bits that they can receive or transmit,

called the maximum transmission unit (MTU). So when compiling a P4 program to a given switch,

we know that the transmitted packets must be smaller than MTU. We exploit this fact to prove a

bound on the size of the bit vectors that must be considered.

More formally, we say that a type 𝜏 is bounded by 𝑁 in a context Γ, written Γ ⊢ 𝜏 ≤ 𝑁 , iff for

every E |= Γ, and ℎ ∈ ⟦𝜏⟧E , |ℎ(𝑝𝑘𝑡𝑖𝑛) | + |ℎ(𝑝𝑘𝑡𝑜𝑢𝑡) | ≤ 𝑁 . We need to bound both ℎ(𝑝𝑘𝑡𝑖𝑛) and
ℎ(𝑝𝑘𝑡𝑜𝑢𝑡) by 𝑁 because (as seen in the reset command), the emitted packet is ℎ(𝑝𝑘𝑡𝑜𝑢𝑡)@ℎ(𝑝𝑘𝑡𝑖𝑛).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:16 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

T-Add-Algo

Γ ⊢ 𝜏1 <: {𝑥 : ⊤ | ¬𝑥 .𝜄.valid} initHT(𝜄) = 𝑣

Γ ⊢ add (𝜄) : (𝑥 : 𝜏1) ⇝ Σ𝑦 : {𝑧 : 𝜏1 | 𝑧 ≡ 𝑥}.{𝑥 : 𝜄 | 𝑧.𝑝𝑘𝑡𝑖𝑛 = 𝑧.𝑝𝑘𝑡𝑜𝑢𝑡 = ⟨⟩ ∧ 𝑧.𝜄 = 𝑣}

T-Ascribe-Algo

Γ ⊢ 𝑐 : (𝑥 : 𝜏1) ⇝ 𝜏 ′
2

Γ ⊢ 𝜏 ′
1
<: 𝜏1 Γ, (𝑥 : 𝜏 ′

1
) ⊢ 𝜏 ′

2
<: 𝜏2

Γ ⊢ 𝑐 as (𝑥 : 𝜏1) → 𝜏2 : (𝑥 : 𝜏 ′
1
) ⇝ 𝜏2

Fig. 10. Selected rules of the algorithmic type system

Theorem 4.1 (MTU-Bound) says that given an algorithmic typing judgement on a program 𝑐 , for

which the input type and all ascribed types in 𝑐 respect the MTU 𝑁 , the output type will require no

more than 𝑁 + emit(𝑐) bits, where emit(𝑐) ∈ N is the number of bits that could possibly be emitted

in 𝑐 . The details are shown in the companion technical report. Note that even though the real input

type is constrained by the same MTU 𝑁 , intermediate states may require more than just 𝑁 bits.

MTU-Bound shows that 𝑁 + emit(𝑐) suffices as the maximum combined width of 𝑝𝑘𝑡𝑖𝑛 and 𝑝𝑘𝑡𝑜𝑢𝑡 .

Theorem 4.1 (MTU-Bound). For every Γ, 𝑐 , 𝑥 , 𝜏1, 𝜏2, and 𝑁 , if Γ ⊢ 𝜏1 ≤ 𝑁 and Γ ⊢ 𝑐 : (𝑥 : 𝜏1) ⇝ 𝜏2
and every ascribed type in 𝑐 is also bounded by 𝑁 , then Γ, (𝑥 : 𝜏1) ⊢ 𝜏2 ≤ 𝑁 + emit(𝑐).

Proof. By induction on the typing derivation. For details, see the companion technical report. □

Theorem 4.2 establishes the correctness of the algorithmic typing relation. It states that a program

𝑐 typechecks in the declarative system with type (𝑥 : 𝜏1) → 𝜏2 if and only if it also typechecks in

the algorithmic system with type (𝑥 : 𝜏1) ⇝ 𝜏 ′
2
and the output type of the algorithmic system 𝜏 ′

2
is

a subtype of the output type 𝜏2 of the declarative system.

Theorem 4.2 (Algorithmic Typing Correctness). For all Γ, 𝑐 , 𝑥 , 𝜏1, and 𝜏2, where 𝑥 is not
free in 𝜏1, Γ ⊢ 𝑐 : (𝑥 : 𝜏1) → 𝜏2 if and only if there is some 𝜏 ′

2
such that Γ ⊢ 𝑐 : (𝑥 : 𝜏1) ⇝ 𝜏 ′

2
, and

Γ, (𝑥 : 𝜏1) ⊢ 𝜏 ′2 <: 𝜏2.

Proof. By induction on the typing derivation. For details, see the companion technical report. □

With Theorems 4.2 and 4.1 in hand, it is straightforward to show the decidability of the declarative

type system, i.e., that Γ ⊢ 𝑐 : (𝑥 : 𝜏1) → 𝜏2 is decidable (cf. Theorem 4.3). Theorem 4.2 allows

us to equivalently show that typechecking the command in the algorithmic type system—i.e.,

Γ ⊢ 𝑐 : (𝑥 : 𝜏1) ⇝ 𝜏 ′
2
—terminates and that checking Γ, (𝑥 : 𝜏1) ⊢ 𝜏 ′2 <: 𝜏2 terminates, which follows

by finite enumeration using the bounds guaranteed by Theorem 4.1.

Theorem 4.3 (Decidability). If Γ, 𝜏1, 𝜏2 and every ascribed type in 𝑐 are bounded by the MTU 𝑁 ,
then Γ ⊢ 𝑐 : (𝑥 : 𝜏1) → 𝜏2 is decidable.

Proof. Proof by Algorithmic Typing Correctness, MTU-Bound and by induction on the typing

derivation. For details, see the companion technical report. □

4.2 Rewriting Optimizations
The final major difference between the declarative type system and our implementation is that we

exploit two type equivalences to eliminate Σ-types and chomp. We exploit the fact that Σ-types
can be written using refinement and substitution types. In other words, in any context Γ, the type
Σ𝑥 : 𝜏1.𝜏2 is equivalent to

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:17

𝑥 :⊤
������
(
𝑥 .𝑝𝑘𝑡𝑖𝑛 = 𝑙 .𝑝𝑘𝑡𝑖𝑛@𝑟 .𝑝𝑘𝑡𝑖𝑛 ∧
𝑥 .𝑝𝑘𝑡𝑜𝑢𝑡 = 𝑙 .𝑝𝑘𝑡𝑜𝑢𝑡@𝑟 .𝑝𝑘𝑡𝑜𝑢𝑡

)
∧
∧

𝜄∈dom(HT)

©«
𝑥 .𝜄.valid = 𝑙 .𝜄 .valid ⊕ 𝑟 .𝜄.valid ∧
𝑙 .𝜄 .valid =⇒ 𝑥 .𝜄 = 𝑙 .𝜄 ∧
𝑟 .𝜄.valid =⇒ 𝑥 .𝜄 = 𝑟 .𝜄

ª®¬
 [𝑟 ↦→ 𝜏2]
[𝑙 ↦→ 𝜏1]

We also can eliminate occurrences of chomp produced by extractions. Observe that in the context

where (𝑥 : 𝜏), the following two types are equivalent

Σ𝑦 :

{
𝑧 : 𝜄

���� 𝑧.𝑝𝑘𝑡𝑖𝑛 = ⟨⟩ ∧
𝑧.𝑝𝑘𝑡𝑜𝑢𝑡 = ⟨⟩

}
.

{
𝑧 : chomp(𝜏, 𝜄, 𝑦)

���� (𝑦.𝜄@𝑧.𝑝𝑘𝑡𝑖𝑛 = 𝑥 .𝑝𝑘𝑡𝑖𝑛 ∧
𝑧.𝑝𝑘𝑡𝑜𝑢𝑡 = 𝑥 .𝑝𝑘𝑡𝑜𝑢𝑡

)
∧ 𝑧 ≡𝜄 𝑥

}
�

{𝑦 : ⊤ | 𝑦.𝜄.valid ∧ 𝑥 .𝑝𝑘𝑡𝑖𝑛 = 𝑦.𝜄@𝑦.𝑝𝑘𝑡𝑖𝑛 ∧ 𝑥 .𝑝𝑘𝑡𝑜𝑢𝑡 = 𝑦.𝑝𝑘𝑡𝑜𝑢𝑡 ∧
∧

𝜅∈dom(HT)∧𝜅≠𝜄 𝑦.𝜅 = 𝑥 .𝜅}

Because these types are equivalent we can give extract (𝜄) commands the following type:

(𝑥 : 𝜏) → {𝑦 : ⊤ | 𝑦.𝜄.valid ∧ 𝑥 .𝑝𝑘𝑡𝑖𝑛 = 𝑦.𝜄@𝑦.𝑝𝑘𝑡𝑖𝑛 ∧ 𝑥 .𝑝𝑘𝑡𝑜𝑢𝑡 = 𝑦.𝑝𝑘𝑡𝑜𝑢𝑡 ∧
∧

𝜅∈dom(HT)∧𝜅≠𝜄
𝑦.𝜅 = 𝑥 .𝜅}

This optimization, along with similar changes to the types for add (𝜄) and remit (𝜄) greatly reduce

the size of the generated Z3 formulae, making typechecking tractable.

4.3 Beyond the core calculus
Our prototype is equipped with a P416 frontend that uses Petr4’s parser [Doenges et al. 2021] to

translate a subset of type-annotated P416 programs into Π4 programs. We leverage P4’s builtin

annotation mechanism to allow users to annotate control and parser blocks with types using the

custom @pi4(𝜎) annotation, where 𝜎 is the desired type. We also provide convenience notation

such as @pi4_roundtrip(𝜏), which ensures, as elaborated in Section 5.3 that the composition of

deparser, reset, and parser has type (𝑥 : 𝜏) → {𝑦 : ⊤ | 𝑥 ≡ 𝑦}.

5 CHECKING NETWORK INVARIANTS
We now show that dependent types are a good match for P4, by demonstrating that Π4’s type
system can be used to (i) check real network protocol invariants and (ii) verify a variety of basic

and advanced safety properties. We showcase properties that are also studied in the context of

other P4 verification tools [Liu et al. 2018; Stoenescu et al. 2018]. All examples, in this section and

the next, have been implemented in our Π4 prototype.
In most P4 programs, packet-forwarding behavior is specified using a predefined record of type

standard_metadata_t. In particular, the egress_spec field instructs the switch to forward the

packet out on a specific port. We assume that the field is initialized to 0x00, indicating that no

forwarding decision has been made, and that by setting the field to 0x1FF (i.e., the largest unsigned
9-bit value), the switch can be instructed to drop the packet.

4
For simplicity, we treat all P4 metadata

as an ordinary header instance called stdmeta.

5.1 Protocol conformance
We start with examples showing how Π4’s type system can be used to ensure that a program

conforms with standard network protocols.

4
In the examples that follow, we use bitvector literals assuming that they are implicitly cast to the appropriate widths

(following P416’s casting semantics). The implementation, however, requires these to be explicit lengths, e.g. 0b111111111
instead of 0x1FF for a 9 bit field.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:18 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

1 /* Unsafe */
2 if(ipv4.valid) {
3 stdmeta.egress_spec := 0x1;
4 ipv4.ttl := ipv4.ttl - 0x1
5 }

1 /* Safe */
2 if(ipv4.valid) {
3 if(ipv4.ttl == 0x00) {
4 stdmeta.egress_spec := 0x1FF
5 } else {
6 stdmeta.egress_spec := 0x1;
7 ipv4.ttl := ipv4.ttl - 0x1
8 }
9 }

(x:{y:ipv4~ | y.meta.valid}) ->
{y:ipv4~ | y.meta.valid && (x.ipv4.ttl==0x0 => y.meta.egress_spec==0x1FF)}

Fig. 11. IPv4 TTL example. Top left: doesn’t typecheck; top right: typechecks; bottom: Π4 type encoding the
TTL invariant.

1 /* Unsafe */
2 extract(ether);
3 if(ether.etherType == 0x0800) {
4 extract(ipv4)
5 }

1 /* Safe */
2 extract(ether);
3 if(ether.etherType == 0x0800) {
4 extract(ipv4);
5 if(ipv4.ihl != 0x5) {
6 extract(ipv4opt)
7 }
8 }

(x:{y:𝜖|y.pkt_in.length > 280}) ->
{y:⊤|((y.ipv4.valid && y.ipv4.ihl != 0x5) => y.ipv4opt.valid) &&

((y.ipv4.valid && y.ipv4.ihl == 0x5) => !y.ipv4opt.valid)}

Fig. 12. IPv4 Options example. Top left: doesn’t typecheck; right: typechecks; bottom: Π4 type encoding the
IPv4-Option specification.

IPv4 — Time To Live. For Internet Protocol (IP) packets, the time to live (TTL) limits how often a

packet can be forwarded from one network switch to another. Every time a packet is forwarded,

TTL is decremented; when TTL is zero before the packet has reached its destination, forwarding

halts to eliminate the risk of infinite loops.
5
The code snippet in the top left side of Figure 11 violates

the property because the packet is always forwarded on the same port while TTL is decremented.

We can detect this violation by checking the program with the type at the bottom of Figure 11,

which reads as: Starting in a heap where at least IPv4 is valid, after executing the ingress code, still

at least IPv4 is valid and if the IPv4 TTL is zero, the value of egress_spec indicates that the packet
will be dropped. The program in the top right of Figure 11 successfully typechecks with the type.

IPv4 Options. The standard IPv4 header consists of at least 160 bits, but it may also carry additional

data in optional fields. The Internet Header Length (IHL) field specifies the length of the header as

multiples of 32 and indicates whether additional data is available. Theminimum IHL is 5 (5∗32 = 160)

and the maximum is 15. Due to their flexibility, IP options are notoriously difficult to parse, and

many real-world network devices handle them incorrectly. We can use Π4’s type system to ensure

that we also extract the IPv4 options from the input packet, whenever IPv4 is valid and IHL > 5. The

type shown in the bottom of Figure 12 states that executing the parser in the empty heap where

enough bits are available to extract Ethernet, IPv4 and IPv4 options, produces a heap satisfying

the constraint that when IPv4 is valid and IHL is 5, IPv4 options are not valid, and when IPv4 is

5
Strictly speaking, IPv4 requires a special ICMP message to be returned to the sender to indicate the error.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:19

1 /* Unsafe */
2 extract(ether);
3 extract(ipv4)

1 /* Safe */
2 extract(h.ether);
3 if(ether.etherType == 0x0800) {
4 extract(ipv4)
5 }

(x: {y:𝜖 | y.pkt_in.length > 272}) ->
{y:⊤ | y.ipv4.valid => y.ether.etherType == 0x0800}

Fig. 13. Header dependency example. Top left: doesn’t typecheck; top right: typechecks; bottom: Π4 type
encoding IPv4’s dependency on Ethernet.

valid and IHL > 5, then IPv4 options are valid. Figure 12 shows one example where this property is

violated (top left) and one where it holds (top right).

Header Dependencies. Most protocols have some way of keeping track of what other protocols

are encapsulated in the payload of a packet—i.e., which header follows next. The correspondence

between field values and protocols is typically defined as part of the protocol standard. For example,

an Ethernet frame uses the EtherType field (written ether.etherType) for this purpose: a value
of 0x0800 indicates that the next header is an IPv4 header, while a value of 0x86dd indicates that

the next header is an IPv6 header. This is specified in the type at the bottom of Figure 13. The

code snippet on the top left of Figure 13 violates the dependency between the IPv4 header and the

EtherType field of the Ethernet header. Our type checker detects this by checking that executing

the parser on an empty heap with enough bits to extract both Ethernet and IPv4, produces a heap

with either an invalid or a valid IPv4 header and an EtherType value of 0x0800. The code on the

top right of Figure 13 fixes the error by only extracting ipv4 when ether.etherType is 0x0800.

5.2 Basic Safety Properties
Π4’s type system can be also used to ensure safety properties. We discussed how it detects accesses

to invalid header instances in Section 2. Here we present an example showing how it can be used

to enforce determined forwarding [Liu et al. 2018; Stoenescu et al. 2018]. Typical P4 programs

contain thousands of paths on which a packet can be processed. To avoid situations where packets

are dropped unexpectedly, a desirable invariant is that each program path contains an explicit

forwarding decision—i.e., packets are either forwarded on some switch port or dropped. Our type

checker is able to detect violations of this property. The type in the bottom of Figure 14 shows one

way of encoding this specification as a type. Under the assumption that the egress specification is

initialized with a dummy value of 0x0, the type asserts that it is, at some point, modified during

the execution of the pipeline, i.e., a forwarding decision is made for every packet. The program on

the top left of Figure 14 fails to typecheck with the type, because the egress specification is unset

for packets with ipv4.dst equal to 0x0a0a0a0a. The program on the top right of Figure 14 fixes

this issue via an else-case that assigns the egress specification to 0x1FF.

5.3 Parser-Deparser Compatibility
A P4 program typically defines the parser, controls for ingress and egress pipelines, and the

deparser.
6
In practice, parsing and deparsing may also happen between the ingress and egress

stages—i.e., the deparser code is additionally executed at the end of the ingress followed by the

parser code, before the egress. In such cases, it is important to ensure that data intended to be

6
Why this four-phase structure? Having separate ingress and egress pipelines allows packet processing to occur both before

and after packets are scheduled, typically using one or more queues.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:20 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

1 /* Unsafe */
2 if(ipv4.valid) {
3 if(ipv4.dst != 0x0a0a0a0a) {
4 stdmeta.egress_spec := 0x1FF
5 }
6 }

1 /* Safe */
2 if(ipv4.valid) {
3 if(ipv4.dst != 0x0A0A0A0A) {
4 stdmeta.egress_spec := 0x1
5 } else {
6 stdmeta.egress_spec := 0x1FF
7 }
8 }

(x:{y:ipv4~| y.stdmeta.valid}) -> {y:⊤| y.stdmeta.egress_spec != 0x0}

Fig. 14. Determined forwarding example. Top left: ill-typed; top right: well-typed; bottom: determined for-
warding specification encoded as Π4 type.

carried from ingress to egress is serialized and deserialized correctly. Otherwise, headers may be

unexpectedly removed from the packet.

For example, assume that the parser shown in Figure 15 successfully parses the Ethernet and

IPv4 headers from the input packet, but not a VLAN header. From the code we can conclude that

EtherType must be 0𝑥0800. Let’s further assume that the programmer intends the ingress control

in the middle right of Figure 15. After parsing, the switch checks if a VLAN header is present.

If a VLAN header was already parsed from the input packet, no changes are made. Otherwise a

VLAN header is added (Line 27) and the EtherType of the Ethernet header is updated accordingly.

If an IPv4 header is present, the EtherType must be updated accordingly (Line 31) to obtain a

protocol-conformant packet. Now, assume that the programmer forgot the statement on Line 31,

i.e., didn’t update ether.etherType (this unsafe example is in the left of Figure 15). After running

the deparser at the end of ingress, all three headers are serialized: The first 112 bits correspond

to the Ethernet header, followed by 32 bits of the VLAN header, and another 160 bits of the IPv4

header. Since the programmer forgot to update EtherType, bits 96 to 112 contain the value 0x0800.
If the parser runs with this bitstream as the input, it will first parse the Ethernet header, then look

at the etherType and given the value 0𝑥0800, it will continue to parse the IPv4 header. Hence, the

bits of the VLAN header are parsed as an IPv4 header, leading to a corrupted packet.

To avoid such errors, we want to enforce the invariant that all instances valid at the end of ingress

are equivalent to those obtained after deparsing and re-parsing. We instruct our type checker to

verify this property via the type on Line 36, by checking the whole program with a type that

ensures there are enough bits to parse the headers, shown on Line 1.

5.4 Mutual Exclusion of Headers
The parser shown on the top of Figure 16 conditionally parses either IPv4 or IPv6. Because only

one of the paths is taken at runtime, it should never happen that both instances are valid at the

same time. This property might be exploited in an implementation, allowing the same memory to

be used to store both headers. In this small example, it is easy to see that this invariant holds. But

in larger programs it is difficult to track which header instances are valid on which execution paths.

We can check that the property continues to hold in the ingress in the middle of Figure 16 using

the type in the ascription on Line 1. The ingress code in the middle left of Figure 16 exemplifies

a violation of the property: If a packet enters the control block with a valid IPv4 header, it will

leave with both a valid IPv4 and a valid IPv6 header; a violation of our property. The code on the

middle right is safe because it includes a conditional that explicitly checks the validity of IPv4

before adding IPv6. The combination of union types and refinement types makes our type system

capable of such precise path-dependent reasoning.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:21

1 Parser ≜
2 extract(ether);
3 if(ether.etherType == 0x8100) {
4 extract(vlan);
5 if(vlan.etherType == 0x0800) {
6 extract(ipv4)
7 }
8 } else {
9 if(ether.etherType == 0x0800) {

10 extract(ipv4)
11 }
12 }

13 Deparser ≜
14 if (ether.valid) { remit(ether) };
15 if (vlan.valid) { remit(vlan) };
16 if (ipv4.valid) { remit(ipv4) }

17 UnsafeIngress ≜
18 if(!vlan.valid) {
19 add(vlan);
20 vlan.etherType := 0x0;
21 if(ipv4.valid) {
22 vlan.etherType := 0x0800
23 }
24 };

25 SafeIngress ≜
26 if(!vlan.valid) {
27 add(vlan);
28 vlan.etherType := 0x0;
29 ether.etherType := 0x8100;
30 if(ipv4.valid) {
31 vlan.etherType := 0x0800;
32 }
33 }

34 Parser; Ingress; /* Ingress is either UnsafeIngress or SafeIngress */
35 (Deparser; remit; Parser) as
36 (x:{z:ether~|z.ether.etherType == 0x8100 && z.vlan.valid &&
37 (z.ipv4.valid <=> z.vlan.etherType == 0x0800) &&
38 z.pkt_out.length == 0 &&
39 z.pkt_in.length > 0}) -> {y:⊤| x === y}

(x:{y:𝜖|y.pkt_out.length == 0 && y.pkt_in.length > 304}) -> ⊤

Fig. 15. Roundtripping Definitions. Top left: common parser and deparser; top right: unsafe and safe ingress
code; middle: the pipeline, which typechecks with Ingress ↦→ UnsafeIngress, but not with Ingress ↦→
UnsafeIngress; bottom: the type at which to check the full pipeline.

1 (extract(ether);
2 if (ether.etherType == 0x86dd) { extract(ipv6) }
3 else { if(ether.etherType == 0x0800) { extract(ipv4) } })
4 as (x:{y:𝜖|y.pkt_in.length>432 }) -> {y:ether~|!(y.ipv4.valid&&y.ipv6.valid)};
5 Ingress /* Can be SafeIngress or UnsafeIngress */
6 as (x: {y:ether~|!(y.ipv4.valid && y.ipv6.valid)}) ->
7 {y:ether~|!(y.ipv4.valid && y.ipv6.valid)});
8 if (ether.valid) { remit(ether) };
9 if (ipv4.valid) { remit(ipv4) };

10 if (ipv6.valid) { remit(ipv6) }

11 UnsafeIngress ≜
12 add(ipv6)
13 ether.etherType := 0x86DD

14 SafeIngress ≜
15 if(ipv4.valid) {
16 add(ipv6);
17 ether.etherType := 0x86DD
18 }

(x:{y:𝜖|y.pkt_in.length>432 }) -> ⊤

Fig. 16. Mutual exclusion example: IPv4 and IPv6 should never be simultaneously valid. Top: Common pipeline;
middle left: unsafe Ingress code; middle right: safe Ingress code; bottom: whole program type.

5.5 Limitations
There are a few P4 features that our Π4 prototype does not support, mostly because they pose

challenges to SMT-based approaches to verification: hash functions, externs (a kind of foreign

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:22 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

Fig. 17. Modular router design

1 extract(vlan);
2 Ingress /* Customer Specified. Default, Overwrite, Table, or UnsafeActions */
3 as (x:Σx:stdmeta.ipv4) -> {y:Σy:stdmeta ~.ipv4~|y.vlan == x.vlan};
4 remit(vlan)

Fig. 18. Instantiation of modular router design; the parser (Pre) and deparser (Post) are provided by the
vendor, the Ingress code is provided by the customer.

function interface into the hardware), and registers. The unpredictability of hash functions is

difficult to verify, but we can either over-approximate them as uninterpreted functions, or use

a more fine-grained approach such as concolic verification. Externs either need to be annotated

with specific types, or over-approximated as uninterpreted functions. Registers are on-switch

state that can be modified by the packet or the controller and persists between packets. This

is tricky to represent in the semantics and has some distributed computing concerns. We could

over-approximate the behavior by havoc-ing the values every time the register is read.

6 MODULARITY REASONINGWITH Π4
An emerging design pattern for data plane switches is partial programmability, e.g., Cisco’s

daPIPE [Baldi 2019], which is designed for the Nexus 3400 switch [Cisco 2018]. The idea is that

a device vendor provides a partially-implemented pipeline together with a set of program points

where customers can inject custom code as shown in Figure 17. The designer requires that customer

programs satisfy certain properties, but in current architectures, they are not automatically checked.

To illustrate, consider a deployment of the customizable pipeline in a campus network where

network engineers want to experiment with in-band network telemetry (INT) without perturbing

the VLAN tag, which is used to enforce security policies. Let’s say there are four classes of traffic,

Visitor, Student, Faculty, and Staff, each with unique VLAN identifiers. We want to ensure

that no matter how Ingress is instantiated in the left of Figure 18, it cannot cause students

and visitors to acquire privileges of faculty or staff—e.g., this might leak confidential data. With

Π4, we can design a modular system that statically checks invariants on customer programs.

Practically, we can ensure that VLAN is not changed by checking that customer’s code has a type

like: (𝑥 : 𝜏) → {𝑦 : 𝜏 ′ | 𝑥 .vlan.vid = 𝑦.vlan.vid}, where the 𝜏 and 𝜏 ′ are appropriate for the
specific pipeline. We check, once-and-for-all, that the surrounding switch code composes with this

type, and incrementally check that the customer code has this type (for an appropriate 𝜏).

6.1 Specifying an Invariant
To further illustrate, consider the toy example shown the right of Figure 18, which has a VLAN

instance (32 bits) and the standard metadata used in the P4 switch model (325 bits), including a

9-bit egress specification stdmeta.egress_spec, and a 12-bit vlan tag field, vlan.vid. The control
flow simply extracts the VLAN instance, executes the modular Ingress control, and then emits

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:23

5 Default ≜ skip

6 Table ≜
7 add(_vlan_table);
8 if (_vlan_table.vid_key ==
9 vlan.vid){

10 if (_vlan_table.act == 0b0){
11 stdmeta.egress_spec := 0x1FF
12 } else {
13 stdmeta.egress_spec := 0x1
14 }
15 }

16 Overwrite ≜ vlan.vid := Faculty

17 UnsafeActions ≜
18 add(_vlan_table);
19 if (_vlan_table.vid_key ==
20 vlan.vid) {
21 if (_vlan_table.act == 0b0) {
22 vlan.vid := Faculty
23 } else { vlan.vid := Staff }
24 } else {
25 vlan.vid := Visitor
26 }

Fig. 19. A collection of safe and unsafe customer implementations for the Ingress module from Figure 18.
Top Left: Default ; Top Right: Overwrite; Bottom Left: Table; Bottom Right: Unsafe Actions

the VLAN header. We want the program to typecheck with type (𝑥 : {𝑥 : stdmeta | |𝑥 .𝑝𝑘𝑡𝑖𝑛 | >
32}) → Σ𝑦 : stdmeta~.vlan~.
In this example, the type ascription provides compositional reasoning—i.e., we don’t need to

re-check that the whole pipeline is well-typed. Instead, we check once-and-for all that extract (vlan)
has type (𝑥 : {𝑥 : stdmeta | |𝑥 .𝑝𝑘𝑡𝑖𝑛 | > 32}) → (𝑥 : (Σ𝑥 : stdmeta.ipv4)), and that remit (vlan)
has type (𝑥 : ({𝑥 : Σ𝑥 : stdmeta.ipv4 | 𝑥 .vlan = 𝑦.vlan})) → Σ𝑦 : stdmeta~.vlan~ in context

(𝑦 : Σ𝑥 : stdmeta.ipv4). Both are easy to check.

Now, when we swap in different implementations for Ingress, we only need to check that it

has its ascribed type on Line 3 of Figure 18, without rechecking the surrounding code. With the

infrastructureΠ4’s type system provides, network engineers canmake changes to their experimental

module Ingress and check its compatibility with the switch without re-checking the feasibility of

the whole switch in a modular fashion.

6.2 Checking Customer Programs
We now consider a collection of customer programs as shown in Figure 19 that an engineer may

want to install into the switch and how Π4 prevents security vulnerabilities by ensuring the

customer code has the type annotated on Line 3 of Figure 18.

Default. Consider the empty program, shown in the top left of Figure 18, which would surely be

the default behavior when the programmer hasn’t written any code yet. To typecheck this no-op

module, we check that skip has the ascribed type, which it clearly does, since it does not change

the value of the program.

Overwrite. Conversely, if the customer were to install a blatantly incorrect program as the one

in the top right of Figure 18, which always overwrites the VLAN tag with the identifier reserved

for faculty members, the type system complains that the following subtyping check fails—when

𝑥 .vlan.vid is, say, Student, the two types denote disjoint sets of heaps.

(𝑥 : Σ𝑦 : stdmeta.vlan)
⊢ {𝑤 : Σ𝑦 : stdmeta~.vlan~ | 𝑤.vlan.vid = Faculty}

<: {𝑤 : Σ𝑦 : stdmeta~.vlan~ | 𝑤.vlan.vid = 𝑥 .vlan.vid},

Table. We model match-action tables using an encoding similar to the one used in p4v [Liu et al.

2018], where we create an extra header that captures the keys and selected action. Consider the

vlan table on the bottom left of Figure 18, which matches on vlan.vid and selects one of two

actions: the first sets the egress_spec to 0x1FF; the second sets it to 0x001. To encode this table,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:24 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

we create a new header _vlan_table with a 12-bit field vid_key and a 1-bit field act, modelling

the table application via the code shown in the bottom left of Figure 19. This will typecheck since

no branch of the code modifies the vlan.vid field, and _vlan_table is permitted to be valid.

Unsafe Actions. Now consider a vlan table where each action does modify the VLAN id. For

example, the table shown in the bottom right of Figure 18 can either set the VID to one of

{Faculty, Staff}, or, if the packet misses in the table, to Visitor. Here, the VLAN id is clobbered

whenever this table is applied, triggering a violation of the subset check just as with Overwrite.

7 RELATEDWORK
Formal Reasoning for P4 Programs. A number of verification approaches have been proposed

for P4 programs. p4v [Liu et al. 2018] applies classical techniques based on predicate transformer

semantics to achieve monolithic verification of P4 programs. Vera [Stoenescu et al. 2018] and

P4-Assert [Freire et al. 2018] are symbolic execution engines for P4. The bf4 tool [Dumitrescu

et al. 2020] follows the approach of p4v, but also attempts to infer control-plane constraints that

are sufficiently strong to establish correctness, and offers heuristics for repairing programs when

verification fails. SafeP4 [Eichholz et al. 2019] uses a simple type system to track header validity.

Petr4 [Doenges et al. 2021] develops a formal semantics for P4 but does not itself offer verification

tools. In constrast to this earlier work,Π4 uses dependent types and offers compositional verification.

Dependent Types. Early work by Xi and Pfenning [1999] showed how dependent types could

be used to eliminate run-time safety checks—e.g., array bounds checks in imperative programs.

Xanadu [Xi 2000] adds dependent typing to imperative programming, but does not capture the

effect of mutations in the type. Xi and Harper [2001] later showed how dependent types could

be applied to assembly code. Deputy [Condit et al. 2007] used dependent types to reason about

complex, heap-allocated data structures. Similar to Deputy, Π4’s typing rule for modification of

header fields is also inspired by the Hoare axiom for assignment. Π4 is different in that typechecking
has no effect on the run time and also supports path-sensitive reasoning. Similar to Π4, Hoare
Type Theory (HTT) [Nanevski et al. 2006] statically tracks how the heap evolves during execution.

Typing of computations in HTT is similar to the dependent function types Π4– the type captures

the state before and after execution, possibly relating the output type with the input type. In our

domain, this requires bit-by-bit transformations on the input type, provided by chomp. Other type
systems like Ynot [Nanevski et al. 2008], FCSL [Nanevski et al. 2014], and F

∗
[Swamy et al. 2016]

provide dependent types for low-level imperative programming. They target general functional

verification and often require manual programs-as-proofs to do so. Π4 is designed with domain-

specific properties of network programming in mind and is fully automatic.

Solver-Aided Tools. Recent work on dependently-typed languages has focused on automation,

building on advances in SAT/SMT solvers to make dependent types usable by ordinary programs.

A prominent example is Liquid Haskell [Rondon et al. 2008], which extends Haskell with decidable

refinement types. Under the hood, proof obligations generated during type checking are transpar-

ently handled by an SMT solver. Just as Liquid Haskell requires its refinements to be in the theory

of quantifier-free integer linear arithmetic in order to be decidable, Π4 stipulates that types must

denote finite sets—a restriction justified by the domain. This assumption lets us encode types into

the effectively propositional fragment of first-order logic over bit vectors.

Formalizing Protocols. Another line of work focuses on language-based specifications of protocols.
CMU’s FoxNet project used SML to specify the behavior of an entire networking stack [Biagioni

et al. 1994]. McCann and Chandra [2000] used a type-based approach to give abstract specifications

of protocols. Grammar-based tools such as PADS [Fisher and Gruber 2005], Narcissus [Delaware

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

Dependently-Typed Data Plane Programming 40:25

et al. 2019], and Yakker [Jim et al. 2010], enable specifying the syntax of complex, dependent formats

including network protocols, and provide tools for serializing and deserializing data. They focus

exclusively on deriving correct parsers from a typed representation of data and may be suitable to

describe the header formats and the parser, but there is no equivalent to our chomp operator that

allows us to statically capture how the input packet changes during parsing.

8 CONCLUSION AND FUTUREWORK
This paper presented Π4—the first dependently-typed language for data plane programming—a

domain with difficult challenges where programming language theory can have a big impact. In

particular, low-level data plane languages like P4 seem to be a sweet spot for dependent types. On

the one hand, precise types are necessary because critical correctness properties often hinge on

intricate, bit-level packet formats, where the first few bits of a packet determine the format, the

length, and the processing of the following ones. On the other hand, a high degree of automation is

possible due to the restricted nature of the language, which does not support pointers, loops, or

other features that often complicate very precise type systems. Yet, thus far, dependent typing has

not been explored for data plane programs—the community has relied on verification tools that

lack compositional reasoning.

Π4’s type system is innovative in its combination of refinement types, dependent function types,

a limited form of regular types, including unions, explicit substitutions, and a primitive “chomp”

operation, reminiscent of regular expression derivatives [Brzozowski 1964], which can be used

to give a precise type to P4’s parsing constructs. It is capable of statically checking advanced

properties of data plane programs that combine packet serialization and deserialization operations

with imperative control-flow. Under the hood, an SMT solver automatically discharges the formulas

generated during type checking without requiring any manual proof. We define Π4 formally and

prove type soundness and decidability. Our case studies demonstrate how Π4 supports modular

reasoning in scenarios ranging from basic safety properties to intricate invariants.

There are a number of interesting directions for future work. We plan to investigate connections

that our verified approach to parsing using derivatives may have to other domains, e.g., verified

serializers and deserializers like EverParse [Ramananandro et al. 2019] and Narcissus [Delaware

et al. 2019]. Another direction is to consider the effect of modularity on verification times; if

a tool incrementally caches verification results for ascribed code blocks, it would only have to

check the portions of the code that change between runs of the typechecker. Some preliminary

experiments indicate that modular typechecking offers significant benefits, but an empirical study

to answer this question carefully is left for future work, after we have optimized our prototype.

We also plan to extend Π4 to handle more complicated features of P4 perhaps requiring concolic

techniques [Godefroid et al. 2005]. Further, understanding whether dependent types are the right

interface for modular verification of dataplane programs is important. In fact, user studies inves-

tigating the appropriate typing interfaces, such as gradual typing and type inference, would be

important for guiding the design of impactful systems for modular data plane verification.

ACKNOWLEDGMENTS
We are grateful to the POPL reviewers for their careful feedback andmany suggestions for improving

this paper. Our work has been supported in part by the German Research Foundation (DFG) as

part of the Collaborative Research Center (CRC) 1053 MAKI, by the National Research Center for

Applied Cybersecurity ATHENE, by the National Science Foundation under grant FMiTF-1918396

as well as a Graduate Research Fellowship, the Defense Advanced Research Projects Agency under

Contract HR001120C0107, and gifts from Keysight and InfoSys.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

40:26 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

REFERENCES
M. Baldi. 2019. daPIPE a Data Plane Incremental Programming Environment. In Symposium on Architectures for Networking

and Communications Systems (ANCS). 1–6. https://doi.org/10.1109/ANCS.2019.8901893

Ryan Beckett and Ratul Mahajan. 2020. A General Framework for Compositional Network Modeling. InWorkshop on Hot
Topics in Networks (HotNets). 8–15. https://doi.org/10.1145/3422604.3425930

Edoardo Biagioni, Robert Harper, Peter Lee, and Brian G. Milnes. 1994. Signatures for a Network Protocol Stack: A Systems

Application of Standard ML. In Conference on LISP and Functional Programming (LFP). 55–64. https://doi.org/10.1145/

182409.182431

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin

Vahdat, George Varghese, and David Walker. 2014. P4: Programming Protocol-Independent Packet Processors. SIGCOMM
Computer Communications Review (CCR) (July 2014), 87–95. https://doi.org/10.1145/2656877.2656890

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando Mujica, and Mark

Horowitz. 2013. Forwarding Metamorphosis: Fast Programmable Match-Action Processing in Hardware for SDN. In

Conference of the Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM). 99–110. https://doi.org/10.1145/2486001.2486011

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (Oct. 1964), 481–494. https://doi.org/10.1145/

321239.321249

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca Padovani. 2014. Polymorphic

Functions with Set-Theoretic Types: Part 1: Syntax, Semantics, and Evaluation. In Symposium on Principles of Programming
Languages (POPL). 5–17. https://doi.org/10.1145/2535838.2535840

Cisco. 2018. Cisco Nexus 3000 Series Switches. https://www.cisco.com/c/en/us/products/switches/nexus-3000-series-

switches/index.html

Jeremy Condit, MatthewHarren, Zachary Anderson, David Gay, and George C. Necula. 2007. Dependent Types for Low-Level

Programming. In European Symposium on Programming (ESOP). 520–535. https://doi.org/10.1007/978-3-540-71316-6_35

Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan Ye, and Adam Chlipala. 2019. Narcissus: Correct-

by-Construction Derivation of Decoders and Encoders from Binary Formats. Proceedings of the ACM Programming
Languages (PACMPL) 3, ICFP, Article 82 (July 2019). https://doi.org/10.1145/3341686

Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexander Chang, Newton Ni, Samwise Parkinson, Rudy

Peterson, Alaia Solko-Breslin, Amanda Xu, and Nate Foster. 2021. Petr4: Formal Foundations for P4 Data Planes.

Proceedings of the ACM on Programming Languages (PACMPL) 5, POPL, Article 41 (Jan. 2021). https://doi.org/10.1145/

3434322

Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu, and Costin Raiciu. 2020. Bf4: Towards Bug-Free P4 Programs. In

Conference of the Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM). 571–585. https://doi.org/10.1145/3387514.3405888

Matthias Eichholz, Eric Campbell, Nate Foster, Guido Salvaneschi, and Mira Mezini. 2019. How to Avoid Making a Billion-

Dollar Mistake: Type-Safe Data Plane Programming with SafeP4. In European Conference on Object-Oriented Programming
(ECOOP). 12:1–12:28. https://doi.org/10.4230/LIPIcs.ECOOP.2019.12

Robert Ennals, Richard Sharp, and Alan Mycroft. 2004. Linear Types for Packet Processing. In European Symposium on
Programming (ESOP). 204–218. https://doi.org/10.1007/978-3-540-24725-8_15

Kathleen Fisher and Robert Gruber. 2005. PADS: A Domain-Specific Language for Processing Ad Hoc Data. In Conference on
Programming Language Design and Implementation (PLDI). 295–304. https://doi.org/10.1145/1065010.1065046

Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-Filho, and Marinho Barcellos. 2018. Uncovering

Bugs in P4 Programs with Assertion-Based Verification. In Symposium on SDN Research (SOSR). Article 4, 7 pages.

https://doi.org/10.1145/3185467.3185499

Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang, and

Minlan Yu. 2020. Lyra: A Cross-Platform Language and Compiler for Data Plane Programming on Heterogeneous ASICs.

In Conference of the Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM). 435–450. https://doi.org/10.1145/3387514.3405879

Vladimir Gapeyev and Benjamin C. Pierce. 2003. Regular Object Types. In European Conference on Object-Oriented Program-
ming (ECOOP). 151–175. https://doi.org/10.1007/978-3-540-45070-2_8

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In Conference on
Programming Language Design and Implementation (PLDI). 213–223. https://doi.org/10.1145/1065010.1065036

Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fastabend, Tom Herbert, David Ahern, and

David Miller. 2018. The EXpress Data Path: Fast Programmable Packet Processing in the Operating System Kernel. In

International Conference on Emerging Networking EXperiments and Technologies (CoNEXT). 54–66. https://doi.org/10.

1145/3281411.3281443

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

https://doi.org/10.1109/ANCS.2019.8901893
https://doi.org/10.1145/3422604.3425930
https://doi.org/10.1145/182409.182431
https://doi.org/10.1145/182409.182431
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/2535838.2535840
https://www.cisco.com/c/en/us/products/switches/nexus-3000-series-switches/index.html
https://www.cisco.com/c/en/us/products/switches/nexus-3000-series-switches/index.html
https://doi.org/10.1007/978-3-540-71316-6_35
https://doi.org/10.1145/3341686
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3387514.3405888
https://doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://doi.org/10.1007/978-3-540-24725-8_15
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1145/3185467.3185499
https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1007/978-3-540-45070-2_8
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443

Dependently-Typed Data Plane Programming 40:27

Haruo Hosoya and Benjamin C. Pierce. 2003. XDuce: A Statically Typed XML Processing Language. ACM Transactions on
Internet Technology (TOIT) 3, 2 (May 2003), 117–148. https://doi.org/10.1145/767193.767195

Stephen Ibanez, Gordon Brebner, NickMcKeown, andNoa Zilberman. 2019. The P4->NetFPGAWorkflow for Line-Rate Packet

Processing. In Symposium on Field-Programmable Gate Arrays (FPGA). 1–9. https://doi.org/10.1145/3289602.3293924

Trevor Jim, Yitzhak Mandelbaum, and David Walker. 2010. Semantics and Algorithms for Data-Dependent Grammars. In

Symposium on Principles of Programming Languages (POPL). 417–430. https://doi.org/10.1145/1706299.1706347

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion Stoica. 2017.

NetCache: Balancing Key-Value Stores with Fast In-Network Caching. In Symposium on Operating Systems Principles
(SOSP). 121–136. https://doi.org/10.1145/3132747.3132764

Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert Soulé, Han Wang, Călin Caşcaval, Nick

McKeown, and Nate Foster. 2018. p4v: Practical Verification for Programmable Data Planes. In Conference of the
Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM). 490–503. https://doi.org/10.1145/3230543.3230582

Conor McBride. 2001. The derivative of a regular type is its type of one-hole contexts. Extended abstract, available at

http://strictlypositive.org/diff.pdf.

Peter J. McCann and Satish Chandra. 2000. Packet Types: Abstract Specification of Network Protocol Messages. In Conference
of the Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM). 321–333. https://doi.org/10.1145/347059.347563

Chitra Muthukrishnan, Vern Paxson, Mark Allman, and Aditya Akella. 2010. Using Strongly Typed Networking to Architect

for Tussle. In Workshop on Hot Topics in Networks (HotNets). Article 9, 6 pages. https://doi.org/10.1145/1868447.1868456

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In European Symposium on Programming (ESOP). 290–310. https:

//doi.org/10.1007/978-3-642-54833-8_16

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. 2006. Polymorphism and Separation in Hoare Type Theory. In

International Conference on Functional Programming (ICFP). 62–73. https://doi.org/10.1145/1159803.1159812

Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal. 2008. Ynot: Dependent Types

for Imperative Programs. In International Conference on Functional Programming (ICFP. 229–240. https://doi.org/10.1145/

1411204.1411237

Tahina Ramananandro, Antoine Delignat-Lavaud, Cedric Fournet, Nikhil Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan

Protzenko. 2019. EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats. In USENIX Security
Symposium (USENIX Security). 1465–1482. https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-

lavaud

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Conference on Programming Language Design
and Implementation (PLDI). 159–169. https://doi.org/10.1145/1375581.1375602

Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster. [n.d.]. Composing Dataplane Programs with

𝜇P4. In Conference of the Special Interest Group on Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM). 329–343. https://doi.org/10.1145/3387514.3405872

Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2018. Debugging P4 Programs with

Vera. In Conference of the Special Interest Group on Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM). 518–532. https://doi.org/10.1145/3230543.3230548

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin.

2016. Dependent Types and Multi-Monadic Effects in F*. In Symposium on Principles of Programming Languages (POPL).
256–270. https://doi.org/10.1145/2837614.2837655

Sam Tobin-Hochstadt and Matthias Felleisen. 2010. Logical Types for Untyped Languages. In International Conference on
Functional Programming (ICFP). 117–128. https://doi.org/10.1145/1863543.1863561

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell.

In International Conference on Functional Programming (ICFP). 269–282. https://doi.org/10.1145/2628136.2628161

Niki Vazou, Éric Tanter, and David Van Horn. 2018. Gradual Liquid Type Inference. Proceedings of the ACM on Programming
Languages (PACMPL) 2, OOPSLA, Article 132 (Oct. 2018), 25 pages. https://doi.org/10.1145/3276502

Han Wang, Robert Soulé, Huynh Tu Dang, Ki-Suh Lee, Vishal Shrivastav, Nate Foster, and Hakim Weatherspoon. 2017.

P4FPGA: A Rapid Prototyping Framework for P4. In Symposium on SDN Research (SOSR). 122–135. https://doi.org/10.

1145/3050220.3050234

Hongwei Xi. 2000. Imperative programming with dependent types. In Symposium on Logic in Computer Science (LICS).
375–387. https://doi.org/10.1109/LICS.2000.855785

Hongwei Xi and Robert Harper. 2001. A Dependently Typed Assembly Language. In International Conference on Functional
Programming (ICFP). 169–180. https://doi.org/10.1145/507635.507657

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1145/1706299.1706347
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3230543.3230582
http://strictlypositive.org/diff.pdf
https://doi.org/10.1145/347059.347563
https://doi.org/10.1145/1868447.1868456
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/1159803.1159812
https://doi.org/10.1145/1411204.1411237
https://doi.org/10.1145/1411204.1411237
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/3387514.3405872
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3276502
https://doi.org/10.1145/3050220.3050234
https://doi.org/10.1145/3050220.3050234
https://doi.org/10.1109/LICS.2000.855785
https://doi.org/10.1145/507635.507657

40:28 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini

Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In Symposium on Principles of
Programming Languages (POPL). 214–227.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 40. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Background
	3 Dependent Types for P4
	3.1 Design of 4
	3.2 Syntax
	3.3 Type System
	3.4 Operational semantics
	3.5 Typing Judgement
	3.6 Chomp
	3.7 Safety of Pi4

	4 Implementation
	4.1 Algorithmic Type System and Decidability
	4.2 Rewriting Optimizations
	4.3 Beyond the core calculus

	5 Checking Network Invariants
	5.1 Protocol conformance
	5.2 Basic Safety Properties
	5.3 Parser-Deparser Compatibility
	5.4 Mutual Exclusion of Headers
	5.5 Limitations

	6 Modularity Reasoning with 4
	6.1 Specifying an Invariant
	6.2 Checking Customer Programs

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

