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Abstract

In this thesis, we present sound and complete axiomatic framework for Linear
Temporal Logic over finite traces (LTLf ), as well as a decision procedure.
This is founded on the work on LTL of [21, 14, 25, 24], and the specific work
on LTLf in [8, 9, 4]. Our approach follows the least fixpoint method for LTL
given in [21], using insights about finitude presented in [25, 24]. Finally, the
completeness of LTLf extends the partial completeness proof for Temporal
Netkat to a full completeness result.
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Chapter 1

Introduction

Temporal logics give us ways to reason about how various objects change
over discrete time steps. Temporal reasoning is invaluable for escaping the
functional model of program verification, where programs are modelled as
functions and verifications are based on the input and output of those func-
tions. However, sometimes we want to analyze the internal behaviour of
programs independent of their output, and so an analysis of their correctness
under this functional model leaves something to be desired.

As an example, consider the flight plans of two passengers Speedy and
Sleepy, both travelling from their homes in San Francisco to a conference
in New York. Speedy, a senior professor, is flying direct from SFO to JFK,
whereas Sleepy, a student, is flying from SFO to PHX to DFW to JFK. If we
a consider a function ports : Traveler → Port×Port that collects the first and
last airports for each traveler, we see that ports(Sleepy) = ports(Speedy) =
(SFO, JFK). Our functional interpretation presents Speedy’s and Sleepy’s
travel as equivalent, however we know that Sleepy probably spent less money,
and had a more exhausting experience, whereas Speedy probably paid more
money for their ticket, and had a more pleasant experience.

Temporal logic allows us to differentiate Speedy’s travel from Sleepy’s
travel by asking questions like “if the traveler is at SFO, will they be in JFK
next?” which is true for Speedy and false for Sleepy. We can also specify
ultimate correctness goals like “if the traveler is at SFO, will they ever end
their journey in JFK?”.

Another use case for temporal logic is the class of functions with side
effects. For example, database systems [6], operating systems [6], and Mars
Rovers [2, 3] are programs that begin running with little to no input, accept-
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ing instead inputs during the run of the program, and and producing outputs
before termination. So in these situations, a functional model, while provid-
ing important and necessary information, is not sufficiently nuanced. To
formally verify their systems, then, the above authors use the most widely-
used temporal logic, called Linear Temporal Logic, or LTL [28].

Conventionally, LTL’s model of time assumes the possibility of infinite
time. Recently, researchers have more closely considered a variant of LTL,
called LTLf [8], that assumes a strictly finite model of time, analyzing both
the theoretical properties [9, 8] and applying it to network programming to
reason about the history of a packet in a network [4].

Before we begin to study LTLf in earnest, we first need to understand how
to formulate and study a logic. We understand [18] a logic to be comprised of
three parts: a syntax, a semantics, and a theory i.e. an axiomatic framework.
We will descibe these in more detail presently. Once we have the entire
logic specification, we can begin to prove certain properties about the logic.
The important properties that we consider are soundness, completeness and
decidability.

Before we jump into reasoning about Temporal Logic (Sections 2 - 3q)
we study the the syntax, semantics, axiomatic framework, soundness, and
completeness of the simpler and more familiar context of Classical Logic.
Once we complete that we will study the cannonical temporal logic, LTL,
and its properties of soundness and completeness. Then, we will present the
meat of the paper, a sound and complete axiomatic framing for LTLf and a
decision procedure. We will conclude with an analysis of related work and
future directions.

1.1 Syntax

Around the turn of the century, mathematicians and philosophers became
involved in self-study, attempting to discover what mathematical reasoning
was, and if it worked. Of course, this includes problems like “why does
2 + 2 = 4 and not 5?” and “Does the set of all sets contain itself?”, but it
really attempts to solve a much more fundamental problem:

How do we know that our proofs prove what we think they do?

For some, this is a rather simple problem. A student will submit a proof,
as part of a homework set, to an oracle. The oracle decides whether the
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proof is correct, and adjusts the student’s grade accordingly. But this begs
the question! When a mathematician has a new proof, they have no oracle
to turn to, so she will consult her colleagues, friends, family, and dog, who
will decide if they believe that the proof works. Then she will submit it to
“the community”, which will then decide whether it believes the proof.

In studying proofs, it is futile to try and model this “belief” approach
when analyzing proof in general. It similarly unwise to attempt to study
every proof ever written and determine its correctness. To avoid absurdity,
we need to come up with effective abstractions for proofs as well as their
truth. So, we will first consider the even more fundamental question of What
is a proof? Typically, a proof is an sequence of sentences designed to convice
a reader of the truth of a statement. So, we need to abstract from specific
sentences to generic sentences and define way to combine and maniplate the
form of these sentences in a way that is universally convincing.

To abstract sentences, we need a set of symbols that define sets of these
sentences. Of course we can only represent a small subset of these sentences,
but we can capture many of the important ones. We will call the set of
symbols a syntax. The syntax we will start with in Definition 1.1 is the
ubiquitous Classical Propositional Logic [5, 18].

Definition 1.1 (Syntax for Classical Logic). A formula can be either a
variable v from some set V, the symbol ⊥, pronounced “bot”, “bottom”, or
“false”, or an implication, a → b, pronounced “a implies b”, where a and b
are other formulae. We can define this syntax symbolically below:

a, b ::= v | ⊥ | a→ b

The set of formulae that can be generated by the set V and using the above
syntax is CL(V), that is, every formula in CL(V) is v ∈ V, the symbol ⊥,
or a→ b where a ∈ CL(V) and b ∈ CL(V).

This syntax allows us to abstractly represent sentences like “If Socrates
is a man, then Socrates is mortal.” To do this, we specify the set V to be

V = {“Socrates is mortal”, “Socrates is a man”}

.
Then we can abstractly represent the sentence as ”Socrates is a man”→

“Socrates is mortal”. Often, however, we don’t care about the content of the
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sentences, so we will leave the set V unspecified and only consider arbitrary
elements thereof.

This simple implication model seems like it might be limiting. How can
we represent that we believe a and b? What about if we believe that a holds
or b holds? Or what if we just think that b is false? To represent these kinds
of sentences we will use syntactic sugar, which is a way of including more
operators as a shorthand for more complicated combinations of symbols.

Definition 1.2 (Syntactic Sugar for Classical Logic).
Negation “a doesn’t hold”

¬a , a→ ⊥
Disjunction “a or b holds”

a ∨ b , ¬a→ b

Conjunction “a holds and b holds”

a ∧ b , ¬(¬a ∨ ¬b)
Lets walk through an intuitive justification for each of these encodings.

Negation We want to express that a does not hold. If a doesn’t hold that
means we should get a contradiction whenever we try and claim a. The
implication goes both ways, so we can encode ¬a as a→ ⊥.

Disjunction Here we want to express that a holds or b holds. Either a holds
or it doesn’t. If a does hold, then certainly “a or b” holds. If a doesn’t hold,
then we say ¬a holds, and since ¬a→ b holds, b must hold and so “a or b”
also holds. The same justification works if we swap the terms a and b, so
we can equivalently encode a ∨ b as ¬b→ a.

Conjunction Here we are simply using DeMorgan’s laws [10]. If a holds
and b holds, then neither ¬a nor ¬b holds. This goes both directions, so we
encode a ∧ b as ¬(¬a ∨ ¬b).

Remark 1.3. Notice that using syntactic sugar is a compact way of speci-
fying common behavior. For example if we were to represent a ∧ b in all its
unsugared glory, we would have to write

a ∧ b , (a→ (b→ ⊥))→ ⊥
Remark 1.4. Our chosen basic syntax isn’t the only way of encoding Clas-
sical logic. We could have also chosen to make ∧ and ¬ our simple operators,
encoding instead a ∨ b , ¬(¬a ∧ ¬b) and a→ b , ¬a ∨ ¬b.
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a b a→ b
true true true
true false false
false true true
false false true

Figure 1.1: Truth Table for Implication

1.2 Classical Logic: Semantics

So far, we have been thinking about understanding formulae as abstractions
of sentences in a proof. In practice, however, we are only concered about
whether those statements are true. For example. If we are trying to reason
about sentences of the form “If Socrates is a cat then Darwin is a monkey”, we
don’t care about Socrates or Darwin, rather Socrates’ cattiness and whether
Darwin really wants a banana. So instead, we will enumerate all possible
worlds. These worlds are

Socrates is a cat Darwin is a monkey
Socrates is a cat Darwin is NOT a monkey
Socrates is NOT a cat Darwin is a monkey
Socrates is NOT a cat Darwin is NOT a monkey

By examining these potential worlds, we can then examine in which cases
the statement “Socrates is a cat”→ “Darwin is a monkey” is true (for some
definition of true). To do this, we need a method of assigning these truth
values within one of these possible worlds. For arbitrary statements of the
form a → b, we can consider how the truth of a and b affects the truth of
the statement a→ b. We represent this in a table similar to the one above,
called a truth table. A truth table is a grid that allows you to quickly perform
the recursion inherent in the structure of a formula for all possible values of
the variables. We demonstrate an abstracted version of the Socrates/Darwin
table of this in Figure 1.1

Truth tables allow for an visualization of how the smaller operators com-
bine into bigger ones. They are also useful for verifying encodings of oper-
ators. To do so, simply draw up the two tables and ensure that given the
same truth values for the variables, the output is the same. Of course, for
an encoding, such as a ∧ b, we don’t have a definition for how the formula
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a b a ∧ b
true true true
true false false
false true false
false false false

a b ¬b a→ ¬b ¬(a→ ¬b)
true true false false true
true false true true false
false true false true false
false false true true false

Figure 1.2: Verification of ∧ encoding

behaves. So we have to define how we want the operator to behave, and then
verify that our encoding behaves appropriately. This is done in Figure 1.2.
Notice that the highlighted columns are exactly the same for the two tables.

While truth tables are useful in some situations, we often want to provide
a more general approach to reasoning about which possible world we are in.
We use a valuation function to define a possible world.

Definition 1.5 (Valuation Function). A valuation function is defined to be
a function η : V→ {true, false}

Now we can mathematically represent rows in the truth tables. For in-
stance, if we have a function η such that η(“Socrates is a cat”) = true, then
we only need to consider possible worlds where Darwin is and isn’t a monkey.
Now, we can use this class of functions to build up meaning for our more
complex operators. We will use the function valη to do this for Classical
Logic.

Definition 1.6 (Valuation Function for Classical Logic). A valuation func-
tion for Classical Logic, written valη : CL(V)→ {true, false}, is an extension
of a valuation fuction η, where CL(V) is the set of all syntactic terms in Clas-
sical Logic over the domain V as defined in 1.1. The function valη is applied
to the terms in CL(V) as follows:

(⊥) valη(⊥) = false

(v) For v ∈ V, valη(v) = η(v)

(→) valη(a→ b) = true if valη(a) = false or valη(b) = true

Now that we have a functional interpetation, want to define a relation
� pronounced “models” that will generalize the valuation function. We will
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write F � a when we want to convey that given a valuation function for
which a certain set of formulae F hold, a will certainly hold. This is a kind
of metamathematical implication that allows us to say, “if I know that the
formulae in F are true, then I also know a”. We define this formally below
in Definition 1.7

Definition 1.7 (The Models Relation for Classical Logic). Given a formula
a and a set of formulae F , we write F � a when for all η : CL(V) →
{true, false}, if for all b ∈ F , valη(b) = true, then we can show that valη(a) =
true.

We say that a formula a is a consequence of F , when F � a. If F = ∅,
then we say that a is (universally) valid and write � a.

Example 1.8. Lets look at an example to understand how this works. Con-
sider the set of formulae F = {a → b, a} and the formula a ∧ b. We want
to see if a ∧ b is a consequence of F . So consider an arbitrary valuation
function η : CL(V), such that valη(a→ b) = true and valη(a) = true, and we
want to show that in this valuation function valη(a ∧ b) = true. So, we have
that valη(a) = false or valη(b) = true, the first case contradicts our other
assumption that valη(a) = true. So we know that valη(b) = true. Since both
a and b are mapped to true, then we see that valη(a ∧ b) = true.

We have given a semantics for Classical Logic, and discussed several se-
mantic models that allow us to understand what formulae (our abstraction
of sentences) mean on an intuitive level. However, we still don’t know how
abstractly reason about them independent of their semantic truth. We still
need a solid way to construct proofs of formulae so that we can know which
moves are allowable in proofs.

1.3 A Proof System

Now we leave the world of truth, and enter the world of proof. When we
consider a semantic interpretation of the formula, we wonder if its valuation
returns true or false. However, in the world of proof we create a set of axioms
and inference rules, and wonder if a formula can be derived by application
and combination of these axioms and inference rules.

Axioms are formulae that we presume to hold. They are often so “ob-
vious” or simple that any rational viewer should be easily able to ascertain
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their correctness. Sometimes, this means doing complicated math! We rep-
resent axioms and inference rules in the standard way [5]. For an arbitrary
rule, we write

〈Premises〉
〈Conclusion〉

(NameOfRule)

where the premises are a set of formulae and the conclusion is a single for-
mula. By this notation, we means that the formula

∧
p a Premises f implies the

Conclusion. there are no assumptions, the rule is called an axiom. Otherwise,
it is an inference rule.

We will also define a relation · ` · ⊆ 2CL(V )×CL(V) pronounced “proves”.
Writing F ` a means that according to a set of rules, a can be derived from
the set of assumptions F . We will write ` for ∅ ` a.

The axioms, inference rules, and ` relation, allow us to reason about what
formulae are provable. Let’s see how these pieces fit together with respect to
Classical Logic. First we will define the proof system for classical logic.

Definition 1.9 (Proof System for Classical Logic). Let the following axioms
and inference rules specify the allowable terms in the ` relation.

The axioms for Classical Logic are:

` a→ a (Id)

` a→ (b→ a) (Weak)

` (a→ (b→ c))→ ((a→ b)→ (a→ c)) (Distr)

` (¬b→ ¬a)→ (a→ b) (ContraPos)

The single inference rule for Classical Logic is

` a→ b ` a
` b

(ModusPonens)

To better understand and believe these rules, let’s show their truth tables.
For each of these rules to be sensible, we expect them to be universally valid,
i.e. true in all possible worlds. This means that the column containing the
rule should be entirely true.
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a a→ a
true true
false false

Figure 1.3: Truth Table for Id

a b b→ a a→ (b→ a)
true true true true
true false true true
false true false true
false false true true

Figure 1.4: Truth Table for Weak

The most interesting case is when we consider ModusPonens rule. This
means that we do not consider all possible worlds, we only consider those
worlds in which a is true and a→ b is true. So, in the truth table, we consider
only rows where a 7→ true and b 7→ true (Figure 1.7).

1.4 Soundness and Completeness

We have an axiomatic framework and a mathematical semantic interpretation
of formulae in the logic; are they really talking about the same thing? That
is, do our notions of proof and truth agree?

Informally, soundness is the claim the the axiomatic framework doesn’t
allow us to prove claims that are not “true” in the intuitive semantic inter-
pretation (whatever “true” means [26, 18]). This serves as a kind of sanity
check; the rules we’ve defined to govern our system actually work. This is
critical for any axiomatic system. If the rules are not sound, then the system
can derive formulae that are “false” in the model.

Once the rules are proven to be sound, we want to know something about
what portion of the set of “true” claims our rules can derive. Completeness
says that the set of “true” claims is a subset of those things that the rules
can derive, meaning that, if a claim is “true”, then it can be proven by the
axiomatic framework. We define these more formally below:
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a b c b→ c a→ b a→ c a→ (b→ c) (a→ b)→ (a→ c) Distr
true true true true true true true true true
true true false false true false false false true
true false true true false true true true true
true false false true false false true true true
false true true true true true true true true
false true false false true true true true true
false false true true true true true true true
false false true true true true true true true

Figure 1.5: Truth table for Distr Axiom

a b ¬a ¬b a→ b ¬a→ ¬b ContraPos
true true false false true true true
true false false true false true true
false true true false true false true
false false true true true true true

Figure 1.6: Truth Table for ContraPos Axiom

Definition 1.10 (Soundness). A logic is called sound if for every F a set of
formulae in the logic, and a a formula in the logic, F ` a implies F � a.

Definition 1.11 (Completeness). A logic is called complete if for F a set of
formulae in the logic and a a formula in the logic, then F � a implies F ` a.

Soundness is a simple property at says that our proofs correspond to
reality. It’s proof is a sensibility argument that amounts to showing that all
of the axioms and inference rules are valid under the model, since every proof
is based on some combination of these axioms and inference rules.

In general, it is a very bad if a proof system or logic is not sound, since
that would allow you to prove things that are false. Since the proof system
is intended to be a formal way of evaluating whether something is true or
not (according to some set of rules) then it defeats the purpose if the system
is not sound.

In contrast, completeness makes a totality argument, saying that the cur-
rent set of axioms can prove every true statement in the logic. This is not
necessary for a logic, and there are many interesting logics that are sound
but not complete, in which we can prove interesting things. For instance,
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a b a→ b b
true true true true
true false false
false true true
false false true

Figure 1.7: Truth Table for the ModusPonens Inference rule

any system of logic or mathematics that has a notion of infinite arithmetic
is not complete [15, 16]. So, this would imply that much of mathematics,
including fields like Number Theory and Analysis, are incomplete. However,
these are quite vibrant fields, in which mathematicians have proven and con-
tinue to prove interesting and useful theorems. So completeness doesn’t say
anything about the “usefulness” or breadth of a system, it is only making a
claim about how tight the correspondence between the rules and the concrete
interpretation of the symbols.

Proving completeness is typically much harder than proving soundness.
To do the latter, we simply need to show that the axioms and inference rules
are sensible with respect to some concrete model. To prove completeness,
we need to consider an arbitrary formula that is true in our model and show
that there exists a proof of that formula.

Let’s start by showing that our choice of axioms are sensible, i.e. proving
that every axiom and inference rule is true under our semantic model.

Theorem 1.12 (Soundness of Classical Logic). Classical Logic is sound.

Proof. We already showed that each of the rules is valid! Examining the
truth tables presented in Section 1.3 demonstrates that each of the rules is
valid in all possible worlds. This is a combinatorial proof that enumerates
all possible inputs and outputs to valη over all η. 4

Theorem 1.13 (Completeness of Classical Logic). Classical Logic is com-
plete.

Proof. Given a proposition a such that F � a, show that ` a. Let V ⊆ V
be the set of variables in F . Consider an arbitrary η function, and let Sη ⊆
CL(V) be

S =

{
v, if v ∈ V, and η(v) = true

¬v, if v ∈ V, and η(v) = false
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Notice now that for every s ∈ Sη, valη(s) = true. Let F ′ = {f ∨¬f | f ∈
F}. Kleene [18] proves a lemma to show that for an arbitrary formula f ,
then valη(f) = true if and only if S ` f . He also shows that for an arbitrary
formula f , if for every η, if Sη ` f , then F ′ ` f .

Chaining these together, we can conclude that F ′ ` a. We can now show
that for every formula f , we have ` f ∨¬f , by desugaring the ∨ operator to
see ` ¬f → ¬f which it a tautology by Id. Since every element of F ′ is of
the form f ∨ ¬f we can conclude that ` a. For more detail, see [18]. 4
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Chapter 2

Linear Temporal Logic

A computer does exactly what a user or programmer tells it to do. This
is a blessing and a curse, as being perfectly precise in the instructions one
gives is a very difficult thing to do, and a programmer will often vociferate
in anguish “That’s what I said, but not what I meant!” Since computers are
frustratingly pedantic, we must find a way to prove that programs do what
we want them to do.

To verify the correctness of programs, computer scientists frequently use
constructive, classical, and first-order logic. These are often powerful tools
used to prove functional properties for programs that have clearly defined
inputs and deliver an output on termination. Sometimes we want to verify
properties of programs that are not related to the inputs and outputs and not
dependent on termination; programs like operating systems [6], databases [6],
or Java execution traces [27]. Linear Temporal Logic (LTL) gives us more
power to verify these types of programs.

LTL offers a way to ask questions about the execution of a program [28].
For example, we can use Temporal Logic to examine the predicament of our
travellers Sleepy and Speedy who want to get from LAX to JFK. If we treat
Sleepy’s flight plan to get from SFO to JFK as a program, we want to make
sure that Sleepy eventually gets to JFK, that the final state of the program
is JFK. If, for some reason, Sleepy has a criminal record in Texas, we can
also make sure that they never fly though DFW.

To formalize these kinds of statements in LTL, we will use that syntax
standard to modal logics, adding the 2 (global), and # (next) operators, to
the standard classical logic operators.
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Definition 2.1. For a set of variables V, with v ∈ V and a and b proposi-
tions, this gives a minimal syntax

a, b ::= v | ⊥ | # a | a→ b | aW b

Define LTL(V) to be the set of formulae generated by the above syntax
over V. An arbitrary formula f ∈ LTL(V) is the symbol ⊥, a variable in V,
of the form # a where a ∈ LTL(V), of the form a→ b where a, b ∈ LTL(V),
or of the form aW b, where a, b ∈ LTL(V).

The statement a W b intuitively corresponds to the statement “a holds
until b holds, or a always does”, and # a corresponds to the statement “in
the next time step, a”. For example, to make sure that Sleepy avoids getting
arrested due to the warrant for their arrest in Dallas, we can make sure that
(Sleepy at SFO) → ¬(Sleepy at DFW) W ⊥, i.e. if Sleepy is at SFO, then
Sleepy won’t arrive at DFW until ⊥ holds. Since ⊥ will never hold, Sleepy
will never be at DFW.

Extending this basic syntax, we get the standard classical logic encodings
from Definition 1.2 of ∧,∨,¬, and >. Further, we can define a couple of
pieces of temporal syntactic sugar. The “always a” operator, written as 2 a,
says “now and for every in the future a”. The “ever” operator is written
3 a, meaning that “at some point in the future, a.” Continuing with our
flight-plan example, it is now easy to determine whether Sleepy actually gets
to JFK airport via the formula Sleepy at SFO → 3(Sleepy at JFK), which
means that Sleepy being in SFO means that they will eventually get to JFK.
Of course, these are just intuitive justifications for these encodings, but we
can make these intuitions more concrete with a semantic interpretation of
the model, using a Kripke Structure [19].

Definition 2.2. Let V be a set of variables. Define a Kripke structure K as
an infinite sequence of valuation functions

K = (η1, η2, η3, . . .)

where ηi : V→ {true, false} is a function from variables to truth values. We
also define the temporal valuation function Ki : LTL(V)→ {true, false}, for
some index i of this kripke structure K, to be
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Ki(v) = ηi(v), for v ∈ V

Ki(⊥) = false

Ki(a→ b) = true iff Ki(a) = false, or Ki(b) = true

Ki(# a) = true, or Ki+1(a) = true

Ki(aW b) = true iff there exists k ≥ i such that Kk(b) = true,

and for i ≤ j ≤ k,Kj(a) = true,

or for every k ≥ i,Kk(a) = true.

We can now set up Sleepy’s travel plans using this formalism. We define
K = (η1, η2, η3, η4, . . .), where

η1(x) =

{
true x = (Sleepy at SFO)

false otherwise

η2(x) =

{
true x = (Sleepy at PHX)

false otherwise

η3(x) =

{
true x = (Sleepy at PHL)

false otherwise

η4(x) =

{
true x = (Sleepy at JFK)

false otherwise

ηi(x) = η4(x) ∀i > 4

So, then we can evaluate our correctness criterion, that

(Sleepy at SFO)→ 3(Sleepy at JFK).

We start at time step 1, since at every other time step i, it is the case
that ηi(Sleepy at SFO) = false. So, let’s evaluate K1(Sleepy at SFO →
3(Sleepy at JFK)). By definition, this is true if K1(¬(Sleepy at SFO)) =
true or K1(3(Sleepy at JFK) = true. We can simplify the first case to
K1(Sleepy at SFO) = false, but, we know that η1(Sleepy at SFO) = true,
so we conclude that K1(¬(Sleepy at SFO)) = false, so we must be in the
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other case. Now, we can simplify K1(3(Sleepy at JFK)) = true to the new
expression K1(2¬(Sleepy at JFK)) = false. So, we must find some i ≥ 1
such that Ki(Sleepy at JFK) = ηi(Sleepy at JFK) = true. This is true when
i = 4, so conclude that K1(3(Sleepy at SFO) = true, and ultimately that
K1(Sleepy at SFO→ 3(Sleepy at JFK)) = true.

Remark 2.3. So far, we have been referring to a “time step” without much
justification for what that means. In this model, we mean a time step i to
be the world ηi.

Once we have a logic’s syntax and its mathematical semantics (as we
do now), we can consider the appropriate axiomatic framework, followed by
soundness and completeness results. But first, we will asses some of the
assumptions made by LTL and show real-world examples of how it is used.

2.1 Background for Linear Temporal Logic

First we present the main assumptions of LTL, and then motivate their use-
fulness with applications of LTL to the real world verification tools Java
Pathfinder [27] and Eagle [2].

2.1.1 Assumptions

Let’s first address the assumptions being made in linear temporal logic. There
are three: (1) time is discretizable, (2) there is always a “next time”, and
(3) if a time step has a “next time” it is unique [21]. The sense of these
assumptions is not entirely apparent, so we will take some time to examine
and justify each of them.

Time is discretizable Physics understands time as continuous, however,
we have presented LTL with a discrete model of time. Why can we do
this? In day to day life, we already use a discrete model of time where
we say that something occurs at time t if it happens between time t and
time t + 1. Computers take a similar approach, operating under a discrete
time model [22]. Since LTL is most frequently used for verifying computer
programs, this assumption makes sense for LTL.
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There is always a “next time” This is a fairly reasonable assumption,
especially when we consider programs like operating systems, and database
systems that ought to run indefinitely, and then when they are terminated,
correctness is suddenly no longer an issue. In certain situations, however, we
may want to want to reason about the end of time. The assumption that
there is always a next time is no longer viable. A simpler system forces time
to end, adding the assumption that “eventually, time ends.” This system
is called Linear Temporal Logic over finite traces 3, also known as (LTLf ).
Another variant of this LTL that questions this assumption is called Past-
time LTL, which in addition to introducing operators about the past, allows
time to either be finite or infinite.

Uniqueness Here we assume that every time step has a unique successor.
With a human, macroscopic understanding of physical processes, it seems
obvious that in the next time step there are not two different valid worlds
(represented as η-functions). This intuition holds for sequential processes,
because there is one sequence of commands that are executed. However,
the uniqueness assumption is often not sufficient for concurrent or parallel
processes [23], as each thread/process has its own distinct successor. When
we throw away the uniqueness assumption, we get a logic called Linear Dy-
namic Logic (LDL), which, while being extremely powerful, is not as popular
as LTL. The uniqueness assumption permits a tractable, easy-to-use formal-
ization.

Once we have these assumptions, one might wonder when these assump-
tions are good ones to make and how powerful the system of LTL is under
these assumptions. The best way to assess the power of a logic is by example;
so what follow are summaries of some of the theoretical properties and uses
in model-checking software.

2.1.2 Applications

Now that we’ve examined the assumptions, it is useful to justify them by
showing they can be applied to real-world situations. What follows is a
description of LTL’s importance to hardware verification and of two distinct
verification tools that use LTL.

17



Intel Hardware Verification LTL, along with its variant CTL (computa-
tion tree logic), is an essential tool in hardware verification [20, 17, 11]. LTL
has been one of the major tools used by Intel [11], used to verify CPU designs
for the Intel Pentium 4 processor [30]. Specifically, they use LTL to verify
the correctness in the “pre-silicon” stage, i.e. to eliminate bugs in the design
of the processor. Following the “pre-silicon” stage is, of course, the “silicon”
stage, in which Intel uses standard test-driven bug-finding techniques. They
were able to use LTL to verify floating-point properties and arithmetic [13]
using a model-checking tool [13] based on LTL that was developed at Intel.

Java Pathfinder Java is an extremely well-known and popular language,
and Java Pathfinder [27], a tool developed by the NASA Ames Research
Center, is the self-titled “swiss army knife of Java verification”. JPF is a
virtual machine that runs automatic tests on your code, theoretically trying
all possible executions of the program to try and expose vulnerabilities.

Recently, an LTL extension called jpf-ltl was added to Java
Pathfinder [27]. It allows for the user to specify various LTL formulae about
their Java program jpf-ltl will attempt to falsify the claim. Most in-
terestingly, a user can specify conditions about sequential and concurrent
programs, referring to anything from method calls to program variables.

For example, a user could ensure that if you call a certain method, it
behaves properly. Let foo be the name a function that computes the action
f on its inputs. We want to know that f(x̄), happens eventually (after some
latency period). So we could ask jpf-ltl to verify the claim

∀x̄.2(foo(x̄)→ 3 f(x̄))

which says that it is always the case that, the effect of foo on x̄ will eventually
occur. Or equivalently, that foo terminates.

Mars Rover Another project out of NASA Ames Laboratory is the Eagle
verification tool used to verify event controllers in an experimental NASA
rover [2]. Eagle is based on the observation that the formulae 2F can be
expressed as maximal solution to the equation X = F ∧ #X and that 3F
is the minimal solution to the equation X = F ∨ #X. Using this notion
of minimal and maximal fixpoints, the authors define further a semantics,
calculus, and evaluation algorithm.
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After its specification and implementation, Eagle was then applied to
test a planetary rover controller called K9. The rover controller was an
extensive multi-threaded shared-memory C++ application that needed to
be responsive to external stimuli. The verification tool, called X9 (since it
explores K9) generated test cases and produced an execution trace for those
cases that failed. The paper cites an error detected by X9 having to do with
temporally dependent processes terminating improperly. More specifically,
for pairs of processes p1 and p2, where p2 depends on the completion of p1, X9
detected a class of bugs caused by p2 trying to start before p1 had terminated.

These real-world examples demonstrate the usefulness of temporal logic in
general, but specifically the formal and operational models provided by LTL.
They also justify assumptions that underlie LTL and begin to explain the
wide acceptance and common usage of LTL.

2.2 Classical Formulation

This section will present the Classical formulation (semantics and proof the-
ory) of LTL and a proof of soundness and completeness. The proof follows a
modifed version of the Henkin-Hasenjaeger proof of LTL of completeness for
classical logic [21]. The first thing we need here is a set of axioms; the axioms
for classical logic and those for predicate logic are remarkably similar.

Definition 2.4 (Proof System for LTL). Define the relation · ` · ⊆ 2LTL(V)×
LTL(V) to be the formulae generated by the following axioms and inference
rules:

Axioms

` all tautologies in Classical Logic (Taut)

` ¬# a↔ #¬a (NegNextDistr)

` #(a→ b)→ # a→ # b (NextDistr)

` aW b→ b ∧ b ∨ a ∧ aW b (WkUntilUnroll)

Inference Rules
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` a ` a→ b

` b
(ModusPonens)

` a
` # a

(Next)

` a→ b a→ # a

` a→ 2 b
(Induction)

Definition 2.4 defines the set of axioms for LTL. The first is the Taut
axiom, in which we simply assume that anything that is a tautology in Clas-
sical Logic (provable from no assumptions) is an axiom of LTL. The next
axiom, NegNextDistr, simply states that (¬·) and (# ·) are distributive.
Then AlwUnroll says that if you have an 2 a, then you get a now, and 2 a
in the next time step. Then we have ModusPonens which is exactly the
same as in classical logic, followed by the Next rule which says that a proof
of a in general, i.e. a proof of a’s validity, is sufficient to say that in the next
time step a holds true, because valid formulae always hold. The final rule is
Induction, which says that if ` a→ b and ` a→ # a then ` a→ 2 b.

As a sanity-check for the rules in Definition 2.4, we state the following
soundness result (Theorem 2.8), which says that the proof rules above only
admit proofs of valid formulae.

Definition 2.5 (Valid). A formula a of LTL(V) is called valid in the tem-
poral structure K for V, denoted �K a, if Ki(a) = > for every i ∈ N.

Definition 2.6 (Consequence). For a set of formula F ∈ LTL(V), we write
F � a, pronounced “a is a consequence of F”, if

∀K, (∀c ∈ F ,�K c) =⇒ �K b

Definition 2.7 (Universal Validity). A formula a is called universally valid
if a is a consequence the empty set of formulae. This is written ∅ � a, or
equivalently � a.

Theorem 2.8 (Soundness). If F ` a, then F � a.

Proof Idea. Induction on the derivation of F ` a. 1 4
1For clarity, we use the 4 symbol to represent the end of a proof since the � symbol

forms part of the object of study.

20



Now we want to assess completeness for LTL. Completeness says that if
a formula a is a consequence of the set of formulae F , then, if we assume
the formulae in F , we can prove a. The proof relies on several important
theorems and lemmata. We will start with a couple of deduction theorems for
LTL, which will allow us to convert consequence and provability statements
of the form F ` a or F � a, to statements of the form ` b and � c.

Theorem 2.9 (Semantic Deduction). For F , a set of formulae, with a and
b formulae, then F , a � b if and only if F � 2 a→ b.

Proof. The proof proceeds by induction on the size of F . 4
Theorem 2.10 (Deduction). For F , a set of formulae, with a and b formu-
lae, then F , a ` b if and only if F ` 2 a→ b.

Proof. Each direction is proved separately and directly. 4

These smaller results allow for us to convert the problem

F � a =⇒ F ` a

to a simpler one. We can let F = a1, a2, . . . an and simplify the problem to

` 2 a1 → 2a2 → · · ·2 an → a

=⇒ � 2 a1 → 2 a2 → · · ·2 an → a

In fact we can generalize this claim even further to

� b =⇒ ` b

This is a much more manageable claim to prove. Next, we will prove an
unsatisfiability result that demonstrates how to bridge the gap between the
� and the ` relations. Specifically, we will come up with a way to generate a
formula b such that ` b in the theory implies b is satisfiable in the model. We
will use the contrapositive of this result in the completeness proof. To prove
this satisfiability theorem, we will introduce a positive-negative pair (PNP)
structure.

The intuition behind the notation and terminology is that a PNP is a
pair of two sets, a positive set (F+), which only contains formulae that are
provable, and the negative set (F−), which only contains formulae whose
negations are provable. PNPs give us a way to separate sets of formulae into
those that we think are true and those that we think are false. We enforce
with a consistency property that allows us to turn our beliefs about truth to
conclusions about provability. These are defined formally below
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Definition 2.11 (Positive-Negative Pair). A Positive Negative Pair (PNP)
is a pair of sets of formulae (F+,F−). For a PNP P , We define the literal

interpretation of P , P̂ to be the formula:

P̂ ,
∧
a∈F+

a ∧
∧
b∈F−

¬b

A PNP P is inconsistent if ` ¬P̂ , and consistent otherwise. Let the set
of all PNPs be PNP .

Now we can prove the Satisfiability Theorem (Theorem 2.12), which says
that the literal interpretation of a consistent PNP is satisfiable in the model.
Here we are relating a statement about provability (“a PNP P is consistent”)

to one about the the model (“there is a model Ki for which Ki(P̂) = true”).

Theorem 2.12 (Satisfiability for LTL). For P, a consistent PNP, the for-

mula P̂ is satisfiable.

Proof idea. Evaluate the way that the PNPs change throughout time (defin-
ing a transition function σ in the full proof) to ensure that each of the tem-
poral operators (# and 2) behave appropriately. Then construct a Kripke
structure K based on the evolution of the PNP throughout time, and show
that K0(P̂) = true. 4

Theorem 2.13 (Completeness for LTL). For F a set of formulae, and a a
formula, if F � a, then F ` a.

Proof Idea. Assume that F � a, where F = a1, . . . , an. Using Theorem 2.9,
we get � 2 a1 → · · · → an → a. We can perform an analogous transformation
on our desired result, using Theorem 2.10. So that we need to show

` 2 a1 → · · · → 2 an → a.

Broaden the claim so that for all formulae b, � b implies ` b. Let the
PNP P = (∅, {b}). Notice that P̂ ≡ ¬b. Then by the contrapositive of
Theorem 2.12, we see ` ¬¬b, which then by Taut derives ` b. 4
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Chapter 3

Linear Temporal Logic over
finite traces

We present our main contribution: a presentation and axiomatization of Lin-
ear Temporal Logic over finite traces (LTLf ), highlighting explicit differences
between itself and standard Linear Temporal Logic (LTL). Importantly, we
derive soundness (Theorem 3.20), and Completeness (Theorem 3.43). We
conclude with a novel decision procedure and a corresponding proof that
satisfiability is decidable (Theorem 3.58).

While the core syntax of LTLf will remain the same as that of LTL, we
introduce some new pieces of syntactic sugar, namely end, pronounced “end”,
and  a, pronounced “weak next a”. The symbol end means that there is no
next state, and  a means either # a or end, so if a holds in every state,  a
will also be true in every state, whereas # a will be false in the final state.

We also adjust the semantics to assert that time will certainly end. In the
underlying model, we will still use Kripke structures from LTL to represent
the evolution of the world through time. In our finite setting, we define a
finite variant of these Kripke structures with exactly n states. When we’re
in this nth and last state, and we try and make a statement like # a, which
asks to evaluate a in the n+1th state, then we immediately evaluate to false,
without ever looking at how a evaluates.

Similarly, in the proof theory, we will include the axiom Finite, which is
` 3 end, and says that eventually, time ends. When time ends, we want to
mimic the behavior of the semantics, i.e. that trying to make a statement of
the form # a is contradictory. To incorporate this behaviour, we also include
the axiom EndNextContra, ` end→ ¬# a, meaning that if we are in the
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last state, # a is contradictory for all formulae a. Further, to compensate for
the end of time, we replace all instances of # a with  a in the unrolling, step,
and induction rules. Notice that, in LTL, the formula 3 end is unsatisfiable.

Finally, in the proofs of soundness, completeness, and decidability, we will
use a similar method to the proofs of those properties for LTL [21], taking
special care to account for these changed assumptions.

3.1 Syntax of LTLf

The syntax for LTLf is th same as LTL’s (Definition 2.1).

a, b ::= # a | aW b | a→ b | ⊥ | v

Figure 3.1: Syntax for LTLf (V)

Our syntax subsumes that of Classical Logic (Chapter 1), namely the bi-
nary implication operator→, the constant ⊥, and the ability to use variables
from the alphabet V. From each of these we can encode the more widely
recognized operators, ∧, ∨, ¬, >, as presented in Definition 1.2.

We also have the temporal operators from LTL, the weak until operator
W , and the next operator #. Intuitively, a statement aW b can be thought
of as “moving forward in time, a holds until b holds, or a always holds”.
Similarly the statement # a can be thought of as “in the next time step a
holds true”.

Recall from Section 2 that unary operators bind tighter than binary op-
erators, so 2, #, and ¬ bind tighter than →, ∧, and ∨, and ∧ binds more
tightly than ∨ which binds more tightly than→. As an example, the formula
# a→ 2 d ∧ c is equivalent to (# a)→ ((2 d) ∧ (¬c)).

3.2 Semantics for LTLf

In LTL, the underlying model is an infinite Kripke structure [19], defined as
an infinite tuple of functions that assign truth values to the variables. In
contrast, for LTLf , we use a finite version, forcing the underlying tuple to
have only finitely many functions.
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Definition 3.1 (Finite Kripke Structure). A finite Kripke structure Kn is
an n-tuple of functions

Kn = (η1, η2, . . . , ηn)

where ηi is a function ηi : V→ {true, false}.

To give a semantics to the formulae generated by the grammar, we first
define a function Kn

i interpreting a formula at time-step i, defined as a fix-
point on the formula. Different from LTL, we need to handle what happens
in the last state. In our finite setting, we make sure that any occurence of
# a at the nth always give false, without ever looking at a.

Definition 3.2. Given a finite Kripke structure Kn = (η1, · · · , ηn), we define
the temporal valuation function Kn

i at state i as a fixpoint on its input:

Kn
i (v) = ηi(v)

Kn
i (⊥) = false

Kn
i (a→ b) =


true if Kn

i (a) = false

true if Kn
i (b) = true

false otherwise

Kn
i (# a) =

{
Kn
i+1(a) if i < n

false otherwise

Kn
i (aW b) =


true if Kn

j (a) = true, for all i ≤ j ≤ n

true if there exists i ≤ k ≤ n, such that Kn
k (b) = true

and for every j such that i ≤ j < k,Kn
i (a) = true

false otherwise

Now prove a totality lemma, which says that in any function Kn
i , every

formula in LTLf (V) evaluates to true or false.

Lemma 3.3 (Totality). For every Kripke structure Kn, every i ∈ {1, . . . , n},
and an arbitrary formula a, then Kn

i (a) = true or Kn
i (a) = false.

Proof. By structural induction on an arbitrary formula a (Lemma A.1). 4
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Example 3.4. As an example, we will define and motivate couple of common
pieces of syntactic sugar [4, 21, 24]. Define

2 a , aW ⊥ (3.1)

3 a , ¬2¬a (3.2)

a U b , aW b ∧3 b (3.3)

 a , ¬#¬a (3.4)

end , ¬#> (3.5)

Lets examine each of these new pieces of syntax in turn, examining why
we might want to use them.

(3.1) The statement 2 a can be interpreted as Kn
i (2 a) = true iff Kn

j (2 a) =
true for all i ≤ j ≤ n. We encode this as (a W ⊥). This eliminates
the second case, since for any i, Kn

i (⊥) = false. Considering the first
case, we have Kn

j (a) = true for i ≤ j ≤ n, which is exactly when we
want Kn

i (2 a) to be true.

(3.2) The unary operator 3 a, pronounced “ever a” or “eventually a” could
be built into the fix Kn

i , interpreted as “there exists a state i such that
Kn
i (a) = true”. We can derive this algebraically.

Kn
i (¬2¬a) = true⇔ Kn

i (2¬a) = false

⇔ not for all j, i ≤ j ≤ n such that Kn
j (¬a) = true

⇔ exists j, i ≤ j ≤ n such that Kn
j (¬a) = false

⇔ exists j, i ≤ j ≤ n such that Kn
j (a) = true

(3.3) The formula a U b, pronounced “a until b” is equivalent to aW b except
that we enforce that b is true at some point, hence the conjunctive 3 b.

(3.4) The next piece of syntax  a, pronounced “weak next” is a form of
next (#) that has a valuation to true in the last state. We observe
that Kn

i ( >) = true forall states i, and this is not the case for #. The
operator behaves as expected for i < n. because of the double negation
in the definition of  . The interesting case coming when i = n, i.e.
there is no next state. In the interpretation above, Kn

n(#>) = false,
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so Kn
n( >) = Kn

n(¬#¬>) = true. In this way, the  operator is
end-agnostic, and will still be true when the world has ended.

(3.5) This also justifies the end sugar, which gives true exactly when i = n.
To see this lets evaluate Kn

n(end).

Kn
n(end) = Kn

n(¬#>) = true iff Kn
n(#>) = false)

Since the only time Kn
i (#>) = false is when i = n, we know that

Kn
n(end) = true.

We have defined LTLf ’s evaluation scheme in a similar way to that of
LTL, paying close attention to the end behavior. To further explore the
nuances of LTLf , we can compare the way that 2 a behaves in LTLf to how
it behaves in LTL. In LTL, the statement 2 a means that in every single
state now and in the future, a holds. Lets look at what happens when we
want to examine 2 a in the last state:

Lemma 3.5 (Always Convergence). Given a Kripke structure of length n,
and a formula a of LTLf (V) then Kn

n(2 a) = Kn
n(a)

Proof. Immediate, by definition of the evaluation function (Lemma A.2). 4

This means that in the last state, given a formula a, if Kn
n(a) = true

then the formula a′ created by removing all of the 2 statements inside a
gives Kn

n(a′) = true. Then we only have to deal with #-statements (which
are false) and classical logic in the nth state.

With this denotational model of LTL over finite traces, we can define
validity of a formula within the language LTLf (V). Notionally, this is when
some assignment of truth values holds for every formula.

Definition 3.6 (Valid). A formula a of LTLf (V) is called valid in the tem-
poral structure Kn for V, denoted �Kn a, if Kn

i (a) = true for every i ∈ N.

Definition 3.7 (Consequence). For a set of formula false, we write F � a,
“pronounced a is a consequence of false”, if

for all Kn, (for all c ∈ F �Kn b) =⇒ �Kn b

Definition 3.8 (Universal Validity). A formula a is called universally valid
if a is a consequence the empty set of formulae. This is written ∅ � a, or
equivalently � a.
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Remark 3.9. When we write Kn, we are not saying that n is an index to an
infinite Kripke structure K or a finite one Km with m ≥ n. Rather, n is the
number of time-steps in the structure, and we cannot formulate it without
this n. It is helpful to think of n as an annotation that marks the structure’s
size.

Lets make a brief aside to consider an alternate notion of what it means
to be a “finite Kripke structure”. Instead of a finite list of valuations, we
could define it as a finite prefix of an infinite kripke structure, parameterizing
on n.

Definition 3.10 (Truncated Kripke Structure). Let K be a kripke struc-
ture K = (η1, η2, . . .) where the functions η are defined as above, and let
n be a positive integer. Then a truncation of K is a finite tuple K[n] =
[η1, η2, . . . , ηn].

The definitions of Validity, Consequence, and Universal Validity would
then mostly be syntactic translations from Kn to K[n] assuming a Kripke
structure K. However we need to modify consequence slightly:

Definition 3.11 (Consequence). Let F be a set of formulae, a a formula,
and K be a Kripke structure such that for every trucation of K at timestep
n ∈ N, and every formula b ∈ F , we can write �K[n] b. Then write F � a,
pronounced a is a consequence of false, if �K[n] a.

These two semantic models, finite Kripke structures and truncated Kripke
structures, seem like they might have different consequences and different
proof mechanisms. However, it doesn’t matter which we choose, since they
are, in fact, equivalent.

Corollary 3.12. Given a finite Kripke structure Kn = (η1, η2, . . . , ηn) and
an infinite Kripke structure K = (η′1, η

′
2, η
′
3, . . .), such that ηi = η′i, �Kn a if

and only if �K[n] a.

Proof. By induction on the size of Kn (Lemma A.3). 4

Now lets prove a couple of important lemmata that will help us later.
First, we prove that implication behaves appropriately, by proving a semantic
version of modus ponens.

Lemma 3.13 (Semantic Modus Ponens). For a given set of formulae F ,
with a, b formulae, if F � a and F � a→ b, then F � b.
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Proof. By unrolling the definitions (Lemma A.4). 4

Now, we demonstrate the power of the temporal operators. We show that
if you assume a, you will be able to show 2 a, and similarly, if you have a
and #>, you can derive # a.

Lemma 3.14 (Assumption of Temporal Operators). For a set of formulae
F , then F ∪ {a,#>} � # a and F ∪ {a} � 2 a.

Proof. By definition; since F � a means a is a consequence of F , i.e. a holds
at all steps (Lemma A.5). 4

Corollary 3.15 (Always to Next). For a formula a, � (#> ∧2 a)→ # a.

Proof. Direct consequence of the proof of Lemma 3.14. 4

Corollary 3.16 (Next Assumption).

#> � ⊥

Proof. Vacuously true — no finite Kripke structure exists such thatKn
i (#>) =

true for all i ∈ {1, . . . , n} (Lemma A.6). 4

Notice that a consequence of Corollary 3.16 is that we can never assume
# a for any a. We must bear this in mind when we formulate our axioms.
In fact, it seems that when we assume a set of formulae F we are lifting the
2 operator over the set and assuming the formulae in the set {2 a | a ∈ F}.
Notice that this means that our idea of deduction for the � relation must be
slightly different than we might usually imagine. Typically, we are able to
show that a � b if and only if � a→ b. However, Lemma 3.14 demonstrates
that we won’t get this result. In fact, the best we can do is a � b if and only
if � (2 a)→ b as shown in Theorem 3.17.

Theorem 3.17 (Semantic Deduction). For all F , a and b,

F ∪ {a} � b, if and only if F � (2 a)→ b.

Proof. First prove F ∪{a} � b =⇒ F � 2 a→ b and then prove F � 2 a→
b =⇒ F ∪ {a} � b.
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(⇒) For the forwards direction, assume F ∪ {a} � b, and let

Kn = (η1, η2, . . . , ηn)

be a temporal structure such that �Kn c for every c ∈ F . Let i ∈
{1, . . . , n}. Then Ki(c) = true for every c ∈ F . We want to show that
Kn
i (2 a → b). If Kn

i (2 a) = false the result is trivial, so assume that
Kn
i (2 a) = true which means that Kn

j (a) = true for every j ≥ i, to
show that Kn

i (b) = true.

Define (Kn)(i) = (η′1, η
′
2, · · · η′n−i) to be the temporal structure con-

structed from Kn such that η′j = ηi+j.

Now we get (Kn)
(i)
j (a) = true and (Kn)

(i)
j (c) for all 0 ≤ j ≤ n − i

and c ∈ F . Then by assumption we get (Kn)
(i)
0 (b) = true, which is

equivalent to Kn
i (b) = true.

(⇐) Assume that F � 2 a → b. Define Kn = (η1, · · · , ηn) to be a finite
temporal structure such that �Kn c for every c ∈ F ∪ {a} and i ∈ [n].
Then, Kn

i (2 a → b) = true and Kn
j (a) = true for every j ≥ i. So by

definition Kn
i (2 a). Then by Lemma 3.13, Kn

i (b) = true meaning that
�Kn b so F ∪ {a} � b.

4

Finally, we will demonstrate a common sense Unsatisfiability Lemma
(Lemma 3.18), which says that for a valid statement a, there is no finite
Kripke structure in which a evaluates to true.

Lemma 3.18 (Unsatisfiability). If � a, then there for every Kn and every
i ∈ {1, . . . , n}, Kn

i (¬a) = false. We say that ¬a is unsatisfiable.

Proof. By the definition of the universal validity, for every Kripke structure
Kn
i (a) = true, for every i = 1, . . . , n, so by definition of the Kripke valuation

function, Kn
i (¬a) = false. So, there is no Kripke structure that satisfies

¬a. 4

3.3 Axiomatization of LTLf

Now, we must define a formal system for LTLf . We will assume all tautologies
from propositional logic as axioms. We will refer to this axiom as Taut.
Then we will define several axioms modified from LTL.
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Definition 3.19 (Formal System for LTLf ). For a set of variables V, define
the relation · ` · ⊆ 2LTLf (V)×LTLf (V) by the rules in Figure 3.2. Instead of
writing ∅ ` a, we write ` a. Sometimes, instead of writing ` a for a formula
a, we say a holds. Also, for a formula F , we write F ` a, if, by assuming ` c
for all c ∈ F , we can derive ` a.

all propositional tautologies (Taut)

`  (a→ b)↔ ( a→  b) (WkNextDistr)

` end→ ¬# a (EndNextContra)

` 3 end (Finite)

` aW b↔ b ∨ (a ∧ (aW b)) (WkUntilUnroll)

` a
`  a

(WkNextStep)

` a→ b ` a→  a

` a→ 2 b
(Induction)

Figure 3.2: Axioms & Inference Rules for LTLf

Figure 3.3 presents some useful rules derived from the axioms and infer-
ence rules [4, 21, 25]. Their full proofs are presented in Appendix A. The
judgments presented in Figure 3.3 are the kinds of formulae we can derive in
the proof system. However, we want to make sure that all of these proper-
ties, and indeed the axioms and inference rules themselves, make statements
about the model-theoretic judgement, i.e. we want to show the axioms above
are sound.

Theorem 3.20 (Soundness Theorem for LTLf ). Let a be a formula. If ` a,
then � a.

Proof. By structural induction on ` a, only showing the cases that explicitly
deal with the end of time:

(EndNextContra) We want to show that � ¬#> → ¬# a. So given
some finite Kripke structure Kn, we have two cases, either Kn

i (end) =
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` # a→ ¬end NextNotEnd

` ¬(#> ∧#⊥) NextContraIsContra

` ¬# a↔ end ∨#¬a CommNegNext

`  a↔ (# a ∨ end) NextWkNext

` (end ∨#(a→ b))↔ (# a→ # b) NextDistr

`  > WkNextTop
` a→ b

` # a→ # b
NextMonotone

` 2 a↔ a ∧ 2 a AlwUnroll

` 3 a↔ a ∧#3 a EverUnroll

` (2 a ∧2 b)→ 2(a ∧ b) AlwaysAndDistr
` a→ b

` 2 a→ 2 b
AlwMonotone

` 2 a ∧3 b→ 3(b ∧ a) AlwaysEver

` 2 a→ 3(end ∧ a) AlwaysFinite

` (a U b)↔ b ∨ (a ∧#(aW b))) UntilUnroll

` ¬(a U b)↔ (¬b)W (¬ ∧ ¬b) NotUntil

` 2 a↔ ¬3¬a AlwaysEverDual

` c→ b ∨ (a ∧ c)
` c→ (aW b)

WkUntilInduction

` 2 a→ aW b AlwaysWkUntil

Figure 3.3: Derived rules (proofs in Appendix A)
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false and we’re done, or Kn
i (¬#>) = true and we need to show that

Kn
i (¬# a) = true. The only way that Kn

i (¬#>) could be false is if
i = n, so Kn

i (# a) = Kn
n(# a) = false. Then applying the definition

gives Kn
i (¬# a) = true.

(Finite) Assume we have a proof that ` 3 end. We want to show that
� 3 end. We can desugar this to a form that the Kn

i functions will
understand, namely � ¬2#>. Take an arbitrary function Kn

i and
show that Kn

i (¬((#>) W ⊥)) = true. Equivalently, we show that
Kn
i (((#>) W ⊥)) = false. Since we know that Kn

k (⊥) = false for all
possible k, we must find an index j ∈ [i, n] such that Kn

j (#>) = false.
Let j = n, then by definition Kn

j (#>) = Kn
n(#>) = false.

See Lemma A.7 for remaining cases.

4

Theorem 3.17 showed that for a set of formulae F , and formulae a, b we
have F ∪ {a} � b if and only if F � (2 a)→ b. We want to be able to show
the exact same thing, swapping the ` relation for the � relation.

This informs how we can perform deductive proofs in the logic. In Clas-
sical logic, {a} ` b if and only if ` a → b. So, we prove statements of the
form ` a → b by first proving the equivalent {a} ` b; we say “Assume ` a,
and show ` b”. However in our proof system for LTLf , the judgement a ` b
means ` (2 a)→ b which does not prove ` a→ b. Hence, we cannot derive
` a→ b by saying “Assume ` a and show ` b”. See the proofs in Appendix A
for examples of how to resolve this trouble.

Theorem 3.21 (Deduction Theorem). Let a, b be formulae, F a set of for-
mulae. F ∪ {a} ` b if and only if F ` 2 a→ b.

Proof. From left to right, by induction on the derivation of F ∪{a} ` b; from
right to left, by Taut, WkNext, and Induction (c.f. Theorem A.8). 4

3.4 Completeness for LTLf

We want to show completeness of LTLf , i.e. we want to show that ∀Kn,�Kn a
implies that ` a, for all terms a. That is, if something is valid in the model,
we can prove it using our axioms.
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Our proof largely follows the completeness proof for LTL [21], except we
make sure to both ensure the existence of a final state, and in constructing
satisfying timelines, we make sure to keep track of whether we are in a final
state.

To show the existence of a proof for a formula a, we create a PNP based
on the negation of this formula. As in the proof of Theorem 2.13, this PNP
should be P = (∅, {a}). We will want to show that P is inconsistent, i.e.
that we can derive ` ¬¬a, which is exactly ` a. However, we need to ensure
that our construction respects the finiteness assumption, so we will inject
the axiom Finite into the positive set of this PNP. Construct another PNP
P = ({3 end}, {a}); and demonstrate it’s inconsistency. To do this, we
use a satisfiability theorem (Theorem 3.42) that says that consistent PNPs
have satisfiable interpretations. We show P is unsatisfiable, to conclude that
it is inconsistent. This means that ` ¬P , so ` ¬(3¬#> ∧ ¬a), which
demonstrates ` a using Taut.

The key point in this proof is the satisfiability theorem (Theorem 2.13)
which says that every consistent PNP is satisfiable. To show this theorem
we will construct a large graph structure from a PNP P , called GP , that
will step the PNP through time, examining all potential successors at each
time step. Each node of the graph is a consistent PNP, we will use a closure
function called τ and the step function called σ to create the edge set in the
graph.

We inductively define the function τ : LTLf (V) → 2LTLf (V) from a for-
mula to a set of formulae, to be set of all subformulae of a given formula
(taking # a as atomic). We can then lift this to sets of formulae and PNPs
in the obvious way. For a given PNP Q, call τ(Q) the closure of Q. For
example, we can consider a PNP Q0 = ({3 end,#>}, ∅), then τ(Q0) will
contain every recursive expansions of the formulae in Q0, we see this below:

τ(Q0) = {3 end,2¬end,¬end,¬#>,#>}

So, for a given PNP Q, we want to take all of the formula in τ(Q) and
construct all sensible assignments of the subformulae in τ(Q) to the positive
or negative sets of a PNP. Specifically, extend the positive and negative
sets of Q with elements of τ(Q) − FQ, where no formula is in both sets,
to get a to get a new PNP Q∗. We say that Q∗ is a completion of Q.
So, continuing the above example, one possible completion of Q0 is Q∗0 =
({¬end,3 end,#>}, {⊥, end,2¬end}). We see that pos(Q0) ⊂ pos(Q∗0) and
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Q∗0

Q1

QQQ2

Figure 3.4: An Example Proof Graph

since neg(Q0) = ∅, the same is true for the negative sets. Notice also that
the two sets are distinct, and every element of τ(Q0) appears exactly once.

To get the successors of a PNP, we will step the PNP forward one step in
time, and then take all of the completions at that step. This step function
is called σ. So now, we can to step this forward one place to get

σ(Q∗0) = ({>}, {2¬end})

Then we can find all consistent completions of σ(Q∗0), these will be the
successors of Q∗0. They are:

Q1 = ({>,¬end,#>}, {⊥, end,2¬end})
Q2 = ({>, end}, {⊥,¬end,#>,2¬end})

These two PNPs, Q1 and Q2 correspond to the interesting successor
states, where time ends in Q1 but continues in Q2.

If we continue to build this tree by finding the consistent completions of
σ(Q1) and σ(Q2), we see that σ(Q2) has no consistent completions, whereas
the consistent completions of σ(Q1) are exactly the same as the consistent
completions of σ(Q0). Then we can construct the graph, GQ∗

0
shown in Fig-

ure 3.4. We can see the satisfying models in GQ∗
0
, either the next state is

the end of time Q0 to Q2, or you can take arbitrarily many steps, using any
path like π = Q0,Q1, . . . ,Q1,Q2. This path corresponds to a finite Kripke
structure K |π| = (η1, . . . , η|π| where ηi(v) = true if and only if v is in the
positive set of the ith node in π.

Notice in particular that GQ0∗ is finite. In general, the set of nodes in an
arbitrary proof graph is finite, and for our original PNP P = ({3 end}, {a}),
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we engage in a path-finding exercise1. We care about terminal paths. A
terminal path is one that ends in a node Z, such that #> ∈ Z (called
a terminal node). In our running example, Q2 is a terminal node, and is
identified with a double circle in GQ∗

0
. So, all paths that end in Q2 are

terminal, i.e. all paths of the form Q0,Q1, . . .Q1︸ ︷︷ ︸
0 or more

,Q2.

Some proofs for completeness of LTL [21, 24] try to find something called
a fulfilling or complete path, by which they mean that all temporal formulae
in the path are realized in the path. In the finite setting, it is straightforward
to prove that terminal paths are exactly the fulfilling paths (Corollary 3.40).

Now, we know there exists a terminal path π = P1, P2, . . . , Pn. We create
a Kripke structure Kn from this path as above. We then show that Kn

1 (a) =
true, i.e. that a is satisfiable. So we can conclude that for every PNP Q, if
Q is consistent, then Q̂ is satisfiable.

So how do we use the satisfiability result to prove the general completeness
result? We know that if a PNP is consistent, then it is satisfiable. We’ve
created this PNP P = ({3 end}, {a}), with the intent to show that � a
implies ` a. We know that ¬a is unsatisfiable since a is valid, so we know
that P is inconsistent. This gives us a derivation of ` ¬(3 end ∧ ¬a), which
by some classical machinery gives ` a.

Now we proceed with this proof formally.

Preliminary Definitions and Lemmata

Before we can use the PNPs we defined in Definition 2.11, we need to prove
a lemma about the way that they behave.

Lemma 3.22 (PNPs are Well-Behaved). Let P = (F+,F−) be a consistent
PNP, and a, b be formulae, then

1. F+ and F− are disjoint

2. Either (F+,F− ∪ {a}) or (F+ ∪ {a},F−) is a consistent PNP

3. ⊥ 6∈ F+

4. If, a, b, a→ b ∈ FP , then if a ∈ F− or b ∈ F+, a→ b ∈ F+, otherwise
a→ b ∈ F−.

1Here we are using a loose definition of path where repetition and self-loops are al-
lowed [21]. Some call this structure a walk [31]
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5. If a→ b, a, b ∈ FP , then if a→ b ∈ F+, and a ∈ F+, then b ∈ F+.

Proof. See Lemma A.10. 4

We also want a way to reason about how a formula evolves over time.
We will create a graph structure whose nodes are consistent PNPs, and the
edges represent a potential step forward in time. To do this, we will define
a “step” function σ that will mirror the way the Kn function steps through
the lifetime of the temporal operators.

Definition 3.23 (Step Function). The step function, σ is inductively defined
for a PNP P = (F+,F−) as follows:

σ+
1 (P) = {a | # a ∈ pos(P)}
σ+
2 (P) = {aW b | aW b ∈ pos(P) and b ∈ neg(P)}
σ+
3 (P) = {aW b | aW b ∈ pos(P),#> ∈ neg(P), and a ∈ pos(P)}
σ−4 (P) = {a | # a ∈ neg(P)}
σ−5 (P) = {aW b | aW b ∈ neg(P) and a ∈ pos(P) or b ∈ pos(P)}

Where σ(P) = (σ+
1 (P) ∪ σ+

2 (P) ∪ σ+
3 , σ

−
4 (P) ∪ σ−5 (P)).

We call a formula f ∈ FP unresolved in a PNP P if f ∈ Fσ(P); otherwise,
call f resolved.

Intuitively, applying σ to a function steps all formulae of the form # a to
a, in their respective sets, and then for each statement like aW b, it assesses
whether we have seen as at every step until we see our first b. These actions
combine to provide a transformation on PNPs that morally represents taking
one step forwards in time.

Example 3.24. Now, we can formally see the way that the σ function works
for the node Q∗0 that we examined earlier. Recall the PNP:

Q∗0 = ({¬end,3 end,#>}, {⊥, end,2¬end}) .

Since our definitions are written in terms of the syntactic sugar, lets reduce
the formulae in Q∗0 to only use the basic operators. Then, we rewrite Q∗0 as

Q∗0 = ({¬¬#>,¬((¬¬#>)W ⊥),#>}, {⊥,¬#>, (¬¬#>)W ⊥}) .
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We compute:

σ(Q∗0) = ({>}, {(¬¬#>)W ⊥}) ≡ ({>}, {2¬end}).

Notice that #> is resolved, and (¬¬#>)W ⊥ is unresolved.

We want this σ-function to have a couple of essential properties, and the
4-part definition facilitates a proof by cases. First of all, the σ function is
intended to simulate the change in interesting formulae over a single time
step. In order for this representation to make sense, ` P̂ must imply `
# σ̂(P)) — unless we’re at the end of time, in which case we get ¬# a for all

formulae a. So, to encompass these two cases, we show that P̂ →  σ̂(P ).

Lemma 3.25 (Next-Step Implication). Let P be a PNP

` P̂ →  σ̂(P)

Proof. By cases on σi, ` P̂ →  c whe have c ∈ σ1(P) ∪ σ2(P), and ` P̂ →
 ¬c when c ∈ σ3(P)∪σ4(P). The proposition follows directly from this and
WkNextAndDistr. See Lemma A.9 for the case analysis.

4

Lemma 3.26 (Step Consistency). Let P be a consistent PNP. If ` P̂ →
¬end, then σ(P) is consistent.

Proof. First we show that ` P̂ implies ` σ̂(P). So, assume ` P̂ , and for

the sake of contradiction, assume ` ¬σ̂(P). Then, from WkNext we get

`  ¬σ̂(P). Then, finally from NextWkNext we get ` end ∨ ¬ σ̂(P).

However, we know that ` P̂ → ¬end, so we can just conclude `  σ̂(P). Then

by the contrapositive of Lemma 3.25, derive ` ¬P̂ . We have a contradiction

with ` P̂ , so conclude that ` σ̂(P).

So, if P is consistent, then we know that it is not the case that ` P̂ . We
want to show that σ(P) is consistent, so assume, for the sake of contradiction,

that ` ¬σ̂(P). Then by the contrapositive of ` P̂ implies ` σ̂(P ) (shown in

the previous paragraph), we get ` ¬P̂ , which contradicts the assumption of
P ’s consistency. Hence σ(P) is consistent. 4
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Now that we have a way of stepping PNPs through timesteps, we want to
be able to examine all the pieces of a PNP to see how they interact with each
other. The tool we need to do this is the completion of a PNP. It allows us
to break apart composite formulae into their atomic pieces and assign each
subformula to the positive or negative set. This gives all of the information
about how a PNP is consistent. We define the function τ to perform this
examination of subformulae, formalize a notion of completion, and define the
comps function.

Definition 3.27 (Closure). Define the closure function τ : F → 2F as a
fixpoint on an input formula, that returns the set of subformula of the input:

τ(v) = v for v ∈ V

τ(⊥) = {⊥}
τ(a→ b) = {a→ b} ∪ τ(a) ∪ τ(b)

τ(# a) = {# a}
τ(aW b) = {aW b} ∪ τ(a) ∪ τ(b)

We can also lift the function τ over sets of formula, i.e. τ : 2F → 2F ,
using the definition τ(F) =

⋃
f∈F τ(f), and to apply over a PNP, where

τ(P) = τ(FP). The set τ(x) is called the closure of x.

Definition 3.28 (Extensions and Completions). A PNP Q is an extension
of another PNP P if pos(P) ⊆ pos(Q) and neg(P) ⊆ neg(Q). We say Q
extends P . Q is a completion of P if τ(P) = pos(Q) ∪ neg(Q) and Q is an
extension of P ; Q is called complete.

Definition 3.29 (Completion Function). Let F ∈ LTLf (V) be a set of
formulae and let the function comps : 2LTLf (V) → 2PNP be defined as

comps(F) = {Q | τ(Q) = τ(F)}

We overload the definition of comps to also be a function comps : PNP →
2PNP such that:

comps(P) = {Q | τ(Q) = τ(P) and Q extends P}

The completion of a PNP is an expansion of all of its subformulae that
can be evaluated at the current time step, i.e. all of those formulae that are
not under a # operator. We want to be able to say something about the
consistency of the completions of a complete PNP. But which completions
are consistent?
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Example 3.30. Given a PNP P = ({v1 → v2}, ∅), where v1 and v2 are
variables, we have four completions:

comps(P) = {P∗0 ,P∗1 ,P∗2 ,P∗3}
P∗0 = ({v1 → v2, v1, v2}, ∅)
P∗1 = ({v1 → v2, v1}, {v2})
P∗2 = ({v1 → v2, v2}, {v1})
P∗3 = ({v1 → v2}, {v1, v2})

All of these are consistent, except for P∗2 , the axiom Taut tells us that

the formula P̂∗2 ≡ v1 → v2 ∧ v2 ∧ ¬v1 is contradictory.

The previous example demonstrates that not all completions are consis-
tent, but we’d really like it if at least one of the completions were consistent
(Lemmata 3.31 and 3.33).

Lemma 3.31 (Consistent Closure Existence). Let F be a finite set of for-
mulae, and let P∗1 , · · · P∗m be PNPs with FP∗

i
= τ(F) for all i ∈ {1, . . . ,m}

such that the positive and negative sets are disjoint. Then, `
∨m
i=1 P̂∗i .

Proof. By induction on the number of formulae in F . Consider the base case
where F = τ(F) = ∅. Then P∗ = (∅, ∅) so with FP∗ = τ(F), and P̂∗ ≡ >
and the conclusion holds by Taut.

Now consider the case where τ(F) = {a1, . . . , ak}, for k ≥ 1. Since τ(f)
only contains f and subterms of f , there is some maximal formula aj such
that

aj 6∈ τ({a1, . . . , aj−1, aj+1, . . . , ak}).
Let F ′ ≡ τ(F) − aj. Let P∗′1, . . . ,P∗′l, be the PNPs constructed from F ′.
Then for each PNP P∗′i we construct two new PNPs, one by adding aj to
the positive set, and one by adding aj to the negative set. Let m = 2l
and the PNPs P∗1 , . . . ,P∗m be those PNPs constructed in this manner. The
induction hypothesis is that `

∨l
i=1P∗

′
i. So using the construction above,

and Lemma 3.22, we can conclude that `
∨l
i=1(P∗

′ ∨ aj) ∨
∨l
i=1(P∗

′ ∨ ¬aj).
The result follows by Taut. 4

Example 3.32. Let F = {a ∧ ¬a}. Show that we can prove one of the
PNPs constructed from its completeions. We can do this despite the fact
that a ∧ ¬a is neither provable nor satisfiable. Calculate τ(F) to be
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τ(F) = {a ∧ ¬a, a,¬a}

Let P∗i for i = 1, . . . ,m be the PNPs that can be constructed by par-

titioning τ(F). To show `
∨m
i=1 P̂∗i , we only need to show ` P̂∗i for some

i = 1, . . .m. We know there is some i such that P∗i = ({¬a}, {a, (a ∧ ¬a)}.
Note that P̂∗i = ¬a ∧ ¬a ∧ ¬(a ∧ ¬a). So, by Taut, we can see that ` P̂∗i .

conclude `
∨m
i=1 P̂∗i .

Lemma 3.33 (Consistent Completion Existence). For P, a consistent PNP,
and

` P̂ →
∨

Q∈comps(P)

Q̂

Proof. Let P1, . . . ,Pm be those PNPs with disjoint pos/neg sets such that
τ(P) = τ(Pi). Each one is either in comps(P), inconsistent, or not an exten-
sion, for more detail see Lemma A.11. 4

Lemmata 3.31 and 3.33 allow us to construct the graph using σ and comps
to create the edge relation. Because now we know that for all PNPs that dont
represent the end of time, we can find a consistent successor (Lemmata 3.33
and 3.26) that represents a next state (Lemma 3.25).

Definition 3.34. For a consistent and complete PNP P∗, define the proof
graph rooted at P∗, called GP∗ , to be the root P∗, and the successors GQ for
every consistent Q ∈ comps(P∗).

Corollary 3.35. For a consistent and complete PNP P∗, there are a finite
number of vertices in GP∗.

Proof. Each node is a PNP. Specifically each PNP has a finite number of
children, because there are a finite number of completions via τ , and there
are a finite number of unique steps as the σ function consumes # operators,
negativeW operators, and continuing positiveW operators. Since our inital
formula is constrained to be finite, we can only have finitely many nodes. 4

Intuitively this graph GP represents the potential satisfying Kripke struc-
tures of the original formulae in the root P , so we want to show that the tem-
poral operators behave nicely on paths. So we will prove the following lemma,
that looks suspiciously close to our original Semantics (Definition 3.2).
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Lemma 3.36 (Temporal Operators On Paths). Let P be a consistent and
complete PNP and P0,P1,P2, · · · an infinite path in GP , for i ∈ N and a a
formula.

1. If # a ∈ FPi
, then # a ∈ pos(Pi), if and only if a ∈ pos(Pi+1).

2. If aW b ∈ FPi
: aW b ∈ pos(Pi), if and only if b ∈ pos(Pk), for some

k ≥ i, implies that for every j ∈ [i, k), a ∈ pos(Pj).

Proof.

1. Assume that # a ∈ FPi
. If # a ∈ pos(Pi) then a ∈ pos(σ(Pi)) by the

definition of σ and the completeness of Pi. Then the definition of GP
implies a ∈ pos(Pi+1). Conversely, if # a 6∈ pos(Pi), it must be that
# a ∈ neg(Pi). Then by the definition of σ and the completeness of Pi,
a ∈ neg(σ(Pi)). Then a ∈ neg(Pi+1) and by the disjointness of positive
and negative sets (Lemma 3.22) we get a 6∈ pos(Pi+1).

2. We prove each direction separately.

(⇒) Assume a W b ∈ pos(Pi), to show that there exists k ≥ i such
that for every j ∈ [i, k), a ∈ pos(Pj) and b ∈ pos(Pk).
By Taut and WkUntilUnroll ` P̂i → b or ` P̂i → (a∧ (aW
b)). If ` P̂i → b, then we set k = i, and so vacuously a ∈ pos(Pj)
for every j ∈ [i, i) = ∅ and b ∈ P̂i
Otherwise, if ` P̂i → a ∧  (a W b), then since a ∈ τ(a W b),
we have a ∈ pos(Pi). We also know a W b ∈ pos(Pi+1) by the
definition of σ. Continue inductively to see that either a ∈ pos(Pj)
for all j ≥ i, or there is some k such that b ∈ pos(Pj) and for every
i ≤ j < k, a ∈ pos(Pj).

(⇐) Assume that a W b 6∈ pos(Pi). Since a W b ∈ FPi
it must be

that a W b ∈ neg(Pi). Then by Taut and WkUntilUnroll,

` P̂i → (¬b ∧ ¬a) or ` P̂i → (¬b ∧ ¬ (aW b)).

If ` P̂i → (¬b ∧ ¬a), then we have a, b ∈ neg(Pi) which shows
that neither is a ∈ pos(Pi) for all k ≥ i nor does there exist a
k ≥ i where b ∈ pos(Pk) and a ∈ pos(Pj) for every i ≤ j < k.

Otherwise, we consider ` P̂i → ¬b ∧ #¬(a W b). Consistency
gives us that b ∈ neg(Pi) and the definition of σ tells us that
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aW b ∈ neg(Pi+1), so we cannot set k = i. Continue inductively
to conclude that b ∈ neg(Pi).

4

Some proofs using this method loosely refer to the proof graph structure
as a tree [21], which is somewhat misleading since the graphs can have arbi-
trarily large cycles. The graph in Figure 3.4 of the proof graph constructed
from the formula #> already has a self-loop. However, for more compli-
cated formulae, we can see more complicated graph structures. For example
consider the graph constructed from the formula 2((# a)∨ b), in Figure 3.5.
There are many cycles in this graph, such as (Q3,Q4) and (Q4,Q6,Q5,Q7).

Now we can show that every node Q that is not the end of time has a
successor.

Lemma 3.37 (All Nodes Have Successors). Let P be a consistent and com-
plete PNP, and Q1, · · · ,Qn the nodes of GP .

`
n∨
i=1

Q̂i →  
n∨
i=1

Q̂i

Proof. By Lemma 3.25 and Lemma 3.33 (c.f. Lemma A.11). 4

Reasoning about Paths

We want to find a path through this graph structure that we can use to
construct a satisfying finite Kripke structure. When we’re at some node
Q, it is connected to the consistent PNPs in comps(σ(Q)). If there are no
consistent completions, then we know we are at the end of time. So we can
maintain a path of consistent nodes, moving forwards in time with successive
node. However, so far, we don’t know that this path will end, or if it does
where we can find that end point. We have the axiom Finite which says
that ` 3 end, so we can be pretty confident that at some point every path
will end. Let’s call a path that does reach a node in which #> is in the
negative set a terminal path. In Figure 3.4, the terminal paths, were those
that ended in Q2. In Figure 3.5, the red path is the chosen terminal path,
but any path ending in one of the double-lined nodes is a terminal path.

Definition 3.38 (Terminal Path). Given a consistent and complete PNP P ,
and a graph GP , a node Z ∈ V(GP) is called terminal when #> ∈ neg(Z).
A path π is called terminal if it ends in a terminal node.
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Q0

Q8 QOQ1Q6

Q3

Q5

Q4

Q7

OQQ2

Node Contents
Q0 ({3 end,2(# a ∨ b)}, ∅)
Q1 ({b,>,# a ∨ b,¬# a, end,2(# a ∨ b)}, {⊥, a,#> ∨⊥,# a,#>,2¬end})
Q2 ({a, b,>,# a ∨ b,¬# a, end,2(# a ∨ b)}, {⊥,#> ∨⊥,# a,#>,2¬end})
Q3 ({# a ∨ b,#> ∨⊥,3 end,# a,#>,2(# a ∨ b)}, {⊥, b,¬# a, end,2¬end})
Q4 ({b,# a ∨ b,¬# a, end,3 end,2(# a ∨ b)}, {⊥,#> ∨⊥,# a,#>,2¬end})
Q5 ({b,# a ∨ b,#> ∨⊥,3 end,# a,#>,2(# a ∨ b)}, {⊥,¬# a, end,2¬end})
Q6 ({b,# a ∨ b,#> ∨⊥,¬# a,3 end,#>,2(# a ∨ b)}, {⊥, end,# a,2¬end})
Q7 ({a,>,# a ∨ b,#> ∨⊥,# a,#>,2(# a ∨ b)}, {⊥, b,¬# a, end,2¬end})
Q8 ({a, b,>,# a ∨ b,#> ∨⊥,# a,#>,2(# a ∨ b)}, {⊥,¬# a, end,2¬end})
Q9 ({a, b,>,# a ∨ b,#> ∨⊥,¬# a,#>,2(# a ∨ b)}, {⊥, end,# a,2¬end})
Q10 ({>,# a ∨ b,#> ∨⊥,# a,#>,2(# a ∨ b)}, {⊥, a, b,¬# a, end,2¬end})
Q11 ({b,>,# a ∨ b,#> ∨⊥,# a,#>,2(# a ∨ b)}, {⊥, a,¬# a, end,2¬end})
Q12 ({b,>,# a ∨ b,#> ∨⊥,¬# a,#>,2(# a ∨ b)}, {⊥, a, end,# a,2¬end})

Figure 3.5: The graph for 2((# a) ∨ b), with many cycles
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Other proofs for LTL [21, 24] search for a different kind of path, called
a fulfilling path which says that for every i ∈ N, if 2 a ∈ neg(Pi), then
a ∈ ¬(P) for some j ≥ i. We are usingW instead of 2 as our basic operator,
so we will define an analogous definition for paths containing aW b.

Definition 3.39 (Fulfilling Path). Consider a path π = P0,P1, . . . in a graph
GP , where P is a consistent and complete PNP. A temporal formula c ∈ FPi

is called fulfilled in π when there exists a node Pj with j ≥ i such that
c 6∈ τ(σ(Pj)). When the π is clear from context, we can just say that c is
fulfilled. If every temporal term in π is fulfilled, call π a fulfilling path.

In fact, in LTLf , we can demonstrate that every terminal path is a ful-
filling path, thus greatly decreasing the proof obligation.

Lemma 3.40. Every terminal path is a fulfilling path.

Proof. In the terminal node, every as-yet unresolved temporal operator will
be resolved in the terminal node (c.f. Lemma A.12). 4

Since we’ve shown that every terminal path is fulfilling, we need only
to show that there exists a terminal path. Unfortunately this is not true
for proof graphs in general, because they may me constructed without any
information about the end of time. For example, we can have a PNP Q =
({2 a}, ∅), which will never know anything about end or #>, because #> 6∈
τ(Q). To ensure that the tree structure knows about the end of time, we
can insert the axiom ` 3 end into the positive set of the root PNP. This will
make it so that every node is forced to consider whether to stick end into the
positive or negative set; Lemma 3.41 demonstrates that end will end up in a
positive set somewhere in the graph.

Lemma 3.41 (Terminal Path Existence). Let P be a consistent and complete
PNP with 3 end ∈ pos(P). There is a terminal path in GP .

Proof. In fact, we only need to show that there exists a terminal node Z
in the nodes of GP , because GP is connected by definition. We proceed by
induction on the size of GP .

In the base case, the graph is the singleton node P . The only way that
a node has no successors is (by Lemma 3.26) when #> ∈ neg(P), and so
Z ≡ P .

Now, assume that we have a nontrivial GP . Assume for the sake of con-
tradiction that for every node Q of GP , #> ∈ pos(Q). Since 3 end ∈ pos(P),
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and every path out of GP has #> ∈ pos(P), we know that for every node Q
in GP , 2¬¬#> ∈ neg(Q).

Let Q1,Q2, . . . ,Qn be the nodes of GP . Then since ` Q̂i → #> for every
i = 1, . . . n, we conclude `

∨n
i=1Qi → #>.

Recall that `
∨n
i=1 Q̂i →  

∨n
i=1 Q̂i (Lemma 3.37). Now we can use

Induction to conclude `
∨n
i=1 Q̂i → 2#>. We have that P is a node of GP ,

so P ∈ {Q1, · · · ,Qn}, so we know that ` P̂ →
∨n
i=1 Q̂i, and consequently

` P̂ → 2#>. However we assumed P̂ → 3 end, i.e. ` P̂ → ¬2#>,
contradicting the assumption that every node Q of GP has #> ∈ pos(Q).
Therefore, there exists a node Z such that #> ∈ neg(Z). 4

The Proof

Now we are finally in a position to prove the satisfiability result (Theo-
rem 3.42) and use it to derive the completeness theorem (Theorem 3.43).

Theorem 3.42 (Satisfiability Theorem for LTLf ). For any consistent PNP

P, the formula P̂ is satisfiable.

Proof. P ′ = ({3 end} ∪ pos(P), neg(P)) is a consistent PNP, P∗ is a com-
pletion of P ′. And P0, P1, · · · , Pn a complete, finite, rooted path of length n
(by Lemma 3.41) in GP∗. Define Kn = (η0, η1, · · · , ηn) by

ηi(v) = true if v ∈ F+
i

ηi(v) = false otherwise

We want to show that Kn
0 (P̂) = true. This is equivalent to showing that

Kn
0 (P̂ ′) = true, which is also equivalent to showing that Kn

0 (P̂0) = true.
Proving this is hard, so we will generalize the hypothesis making it easier to
prove. We will show that for PNP Pi, and f ∈ FPi

, then Kn
i (f) = true iff

f ∈ pos(Pi), and Kn
i (f) = false otherwise.

We proceed by induction on the derivation of an arbitrary formula f .
Here show only the interesting cases corresponding to the operators → and
W . For the full proof see Lemma A.14

(f = a→ b). Since Pi is a complete PNP, we have that a, b ∈ F+∪F−.
The inductive hypothesis allows us to conclude that Kn

i (a) = false iff
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a 6∈ F+
i . It also allows the conclusion Kn

i (b) = true iff b ∈ F+
i . Then,

Kn
i (a → b) = true if and only if Kn

i (a) = false or Kn
i (b) = true, we

can apply the inductive hypotheses to get a ∈ F−i or b ∈ F+
i . Then by

Lemma 3.22, we can conclude that a→ b ∈ F+
i .

(f = a W b). Here we dont need to break into cases, we can prove
this directly. Kn

i (a W b) = true if and only if there exists k ∈ [i, n]
such that for all j ∈ [i, k), Kn

j (a) = true and Kn
k (b) = true. using

the inductive hypothesis, we know this statement holds if and only if
there exists k ∈ [i, n] such that for all j ∈ [i, k), a ∈ pos(Pj) and
b ∈ pos(Pk). Then by Lemma 3.36 the previous statement holds if and
only if aW b ∈ pos(Pi).

4

Theorem 3.43 (Weak Completeness Theorem for LTLf ). Given a finite set
of formulae F = a1, a2, · · · an and a formula b, if F � a, then F ` a.

Proof. First we prove the claim for F = ∅. If � a, then ¬a is not satisfiable
by Theorem 3.18. Consequently the PNP (∅, {a}) is inconsistent by Theo-
rem 3.42. By the definition of consistency, we get ` ¬¬a which gives ` a
using Taut. Let us now show that a proof of � a implies ` a is sufficient.

Let F = a1, · · · an for n > 0. We then have a1, · · · an � a. Then by
Theorem 3.17 we have a1, · · · an−1 � 2 an → a. We can apply Theorem 3.17
n− 1 more times to get � 2 a1 → · · · → 2 an → a, which, as proved above,
gives ` 2 a1 → · · · → 2 an → a. Then by applying Theorem 3.21 n times
we get F ` a. 4

3.5 A Decision Procedure for LTLf

In Section 3.2, we defined the terms valid and satisfiable with respect to
formulae of LTLf . These are great as mathematical definitions and work
well when we can simply assume the validity or satisfiability of a formula.
We now want a way to decide whether a formula is satisfiable, valid, or
otherwise.

Now, how might we fix this? We need to come up with an algorithm to
decide whether a given formula is satisfiable, valid, or unsatisfiable. This is
equivalent to deciding whether, for a given formula, there exists a satisfying
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Kn, every Kn is satisfying, or no Kn is satisfying, respectively. Notice that
if the negation of a formula is unsatisfiable, then that formula is valid, so our
algorithm will only need to detect whether a given formula is satisfiable.

The decision procedure will look very much like a traversal of GP for a
PNP P . The difference is that now we are not allowed to know anything
about the consistency of a node, a central piece of knowledge in the con-
tstruction of GP . If we knew whether a PNP P was consistent, we would
then know that P̂ is satisfiable by soundness (Theorem 3.20). Instead, for a
given PNP, we will create successor nodes that are be implied by the current
node, i.e. if some node Q evaluates to true, then one of its successors also
evaluates to true. We will call our structure a tableau (Definition 3.46). To
make a tableau, we are constructively exploring the potential truth values of
the subformulae in a node Q to determine if it is satsifiable, whereas in the
proof graph, we are assuming consistency of each node to prove satisfiability.
We have no way of knowing anything about the consistency or satisfiability
of a given node in an arbitrary tableau.

As an example, consider a node P with a → b ∈ pos(P). We want to
perfom a case analysis on a and b, so we create 2 successors: a left successor
with ¬a in the positive set, and a right successor with b in the positive set.
Critically, we remove a → b from the positive sets of the successors, since
both ` ¬a → (a → b) and ` b → (a ∨ b) by Taut. Thus, removing a → b
has the nice feature that |τ(P)| is decreasing.

The tricky case to consider, as we might expect, is what to do when
#> ∈ neg(P). At this point we want to try and end time, so we will
define a transformation on PNPs that removes all temporal information.
For variables, implication and the ⊥ symbol we can just remove temporal
operators for any subformulae that may occur. However, for operators like
W and # we need to take some action.

As in the semantics and proof theory, if we are in the last state and
see a formula matching the pattern # a, we simply transform it into ⊥. If
we see a formula a W b, we will need to do some more work. Recall the
WkUntilUnroll axiom which says that aW b↔ b∨ a∧ (aW b). Since
we are at the end of time, the term  (a W b) just becomes > and falls
away, giving a ∨ b. Then since a and b might themselves contain temporal
operators, we will recursively continue the transformation on those formulae.
This is defined formally as the drop function below:
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Definition 3.44 (drop Function). Define drop : LTLf → LTLf below

drop(c) =



⊥ if c ≡ ⊥
⊥ if c ≡ # a
v if v ∈ V

drop(a) ∨ drop(b) if c ≡ aW b

drop(a)→ drop(b) if c ≡ a→ b

We can lift drop to sets of formulae, setting

drop(F) ,
⋃

c∈Form

drop(c).

Lemma 3.45. For every formula c and every finite Kripke structure Kn,

Kn
n(c) = Kn

n(drop(c))

Proof. Let c be an arbitrary formula, Kn an arbitrary Kripke structure. Show
that Kn

n(c) = Kn
n(c). By induction on the structure of c (c.f. Lemma A.15).

4

Now that we have a schema for dealing with syntactic operators, and a
way for dealing with the end of time, we can formally define our construction
of a tableau.

Definition 3.46 (Tableau). Given a PNP P we construct a tableau for P ,
written TP . Let the PNP ({3 end}∪pos(P), neg(P)), be the root node of TP .
For a given node Q in TP , construct its successors using one of the following
rules. If more than one rule is relevant, apply the one occuring earlier in the
list.

(⊥) If ⊥ ∈ pos(Q) or pos(Q) ∩ neg(Q) 6= ∅, there are no successors.

(→+) If a→ b ∈ pos(Q), the successors are:

• ((pos(Q)/{a→ b}) ∪ {b}, neg(Q)), and

• ((pos(Q)/{a→ b}), neg(Q) ∪ {a})

(→−) If a→ b ∈ neg(Q), the successor is:
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• (pos(Q) ∪ {a}, (neg(Q)/(a→ b) ∪ {b})

(W+) If aW b ∈ pos(Q), the successors are:

• ((pos(Q)/{aW b}) ∪ {b}, neg(Q)), and

• ((pos(Q)/{aW b}) ∪ {a, (aW b)}, neg(Q))

(W−) If aW b ∈ neg(Q), the successors are:

• (pos(Q), (neg(Q)/{aW b}) ∪ {a, b}), and

• (pos(Q) ∪ {#¬(aW b)}, (neg(Q)/{aW b}) ∪ {b})

(end) If all of the elements of FQ are either the symbol ⊥, a variable, or
of the form# a for any given a, and both#> ∈ neg(Q) and σ+

1 (Q) = ∅,
the successor is

• (drop(pos(Q)), drop(neg(Q)) ∪ {#>})

(#) If all of the elements of FQ are either the symbol ⊥, a variable, or
of the form # a for any given a, the successor is

• (σ+
1 (Q), σ−4 (Q))

If more than one rule applies at any given state, only the rule that comes
first in the above list. Following this additional rule has the effect of expand-
ing all of the classical logic in the current time step before moving forward
to the next one. In fact, the number of time steps in a path from the root
node of the tableau can be measured by the number of times that the (#)
rule applies (Definition 3.55).

Notice that this tableau is slightly different from the graphs that we saw
in Definition 3.34. For a PNP P and its graph GP , the step from a node A
to a node B represented a step forwards in time, and so in a path, we could
simply map valuation functions to nodes. With respect to tableaux, however,
the successor relationship does not imply a time step. Only the application
of the (#) rule measures time steps; the time in between is an exploration
(akin to the τ function) of the formulae in the current time step. Let’s see
that these rules are sensible:

Lemma 3.47 (Rules are Sound). Let TP be a tableau for a PNP P, and Q
be some node of TP . For all temporal structures K and all i ∈ N:
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a) If (#) does not apply, then Kn
i (Q̂) = Kn

i (Q̂′) for some successor Q′ of
Q.

b) If (#) applies, then Kn
i (Q̂) = Kn

i+1(Q̂′) for the successor Q′ of Q. Also,

Q̂′ is satisfiable only if Q̂ is satsifiable.

Proof. By cases on the rule applied (c.f. Lemma A.16). 4

Similar to the proof of completeness (Theorem 3.43), we need to find
something akin to a terminal path to construct a satsifable finite Kripke
structure. We define it slightly differently, because in the last state, we still
need to examine those non-temporal conditions that hold in the final state.
Define a terminating node, is a node in a tableau TP that has #> in the
negative set, or is a successor of a node Z that has #> in the negative set.
For simplicity, we will simply continue to add #> to the negative sets of Z’s
successors.

Definition 3.48 (Terminating Node in a Tableau). A node Z is terminating
in a tableau TP if #> ∈ neg(Z), and every element in FZ/{#>} is ⊥ or a
variable.

Definition 3.49 (Terminating Path). A terminating path in TP is a path
that ends in a terminating node with no successors.

Let’s look at a simple example of this construction. Most notably, con-
sider the tableau constructed from the PNP ({3 end,2((# a)∨ b)}, ∅), which
is the same PNP as in the root node of the proof graph in Figure 3.5. In
Figure 3.6 we observe a much larger graph, because eacu successor in trueP
represents only a single step of logical unfolding, but σ represents a whole
time step. Notice that there is a terminating path from node Q0 to node Q1,
this is denoted by the the red path.

Definition 3.50 (Closed Nodes). A node Q in a tableau TP for a PNP P is
closed if:

(C1) The (⊥) rule applies to Q, or

(C2) All the successors of Q are closed, or

(C3) All terminating paths from Q have at least one closed node.
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Node Contents
Q0 ({3 end,2(# a ∨ b)}, ∅)
Q1 ({b}, {⊥,#>})
Q2 ({a, b}, {⊥,#>})
Q3 (∅, {¬2(# a ∨ b),2¬end})
Q4 ({⊥}, {¬2(# a ∨ b)})
Q5 ({3 end}, {¬2(# a ∨ b)})
Q6 ({a}, {¬2(# a ∨ b),2¬end})
Q7 ({⊥, a}, {¬2(# a ∨ b)})
Q8 ({a,3 end}, {¬2(# a ∨ b)})
Q9 ({a,2(# a ∨ b)}, {⊥,>})
Q10 ({a}, {>,¬2(# a ∨ b)})
Q11 ({# a ∨ b, 2(# a ∨ b)}, {2¬end})
Q12 ({⊥}, {2¬end})
Q13 ({2(# a ∨ b)}, {2¬end})
Q14 ({# a ∨ b, 2(# a ∨ b)}, {⊥,2¬end})
Q15 ({⊥}, {⊥,2¬end})
Q16 ({2(# a ∨ b)}, {⊥,2¬end})
Q17 ({# a,#3 end}, {⊥,#¬2(# a ∨ b)})
Q18 ({# a}, {⊥,#> ∨⊥,#¬2(# a ∨ b)})
Q19 ({# a}, {⊥,#¬2(# a ∨ b),2¬end})
Q20 ({# a}, {⊥,#>,#¬2(# a ∨ b)})
Q21 ({end,# a}, {⊥,#¬2(# a ∨ b)})
Q22 ({⊥,2(# a ∨ b)}, ∅)
Q23 ({⊥,# a}, {⊥,#¬2(# a ∨ b)})
Q24 ({# a ∨ b}, {#¬2(# a ∨ b),2¬end})
Q25 ({⊥,# a ∨ b}, {2¬end})
Q26 ({# a ∨ b}, {⊥,#¬2(# a ∨ b),2¬end})
Q27 ({⊥,# a ∨ b}, {⊥,2¬end})
Q28 (∅, {¬# a,#¬2(# a ∨ b),2¬end})
Q29 ({b}, {#¬2(# a ∨ b),2¬end})
Q30 (∅, {⊥,¬# a,#¬2(# a ∨ b),2¬end})
Q31 ({b}, {⊥,#¬2(# a ∨ b),2¬end})
Q32 ({b,#3 end}, {⊥,#¬2(# a ∨ b)})
Q33 ({b}, {⊥,#>,#¬2(# a ∨ b)})
Q34 ({⊥, b}, {⊥,#¬2(# a ∨ b)})
Q35 ({b, end}, {⊥,#¬2(# a ∨ b)})
Q36 ({b}, {⊥,#> ∨⊥,#¬2(# a ∨ b)})
Q37 ({a,# a ∨ b, 2(# a ∨ b)}, {⊥,2¬end})
Q38 ({⊥, a}, {⊥,2¬end})
Q39 ({a,2(# a ∨ b)}, {⊥,2¬end})
Q40 ({⊥, a,2(# a ∨ b)}, {⊥})
Q41 ({a,# a,#3 end}, {⊥,#¬2(# a ∨ b)})
Q42 ({a,# a}, {⊥,#> ∨⊥,#¬2(# a ∨ b)})
Q43 ({a,# a}, {⊥,#¬2(# a ∨ b),2¬end})
Q44 ({a,# a}, {⊥,#>,#¬2(# a ∨ b)})
Q45 ({a, end,# a}, {⊥,#¬2(# a ∨ b)})
Q46 ({⊥, a,# a}, {⊥,#¬2(# a ∨ b)})
Q47 ({a,# a ∨ b}, {⊥,#¬2(# a ∨ b),2¬end})
Q48 ({⊥, a,# a ∨ b}, {⊥,2¬end})
Q49 ({a}, {⊥,¬# a,#¬2(# a ∨ b),2¬end})
Q50 ({a, b}, {⊥,#¬2(# a ∨ b),2¬end})
Q51 ({a, b,#3 end}, {⊥,#¬2(# a ∨ b)})
Q52 ({a, b}, {⊥,#>,#¬2(# a ∨ b)})
Q53 ({⊥, a, b}, {⊥,#¬2(# a ∨ b)})
Q54 ({a, b, end}, {⊥,#¬2(# a ∨ b)})
Q55 ({a, b}, {⊥,#> ∨⊥,#¬2(# a ∨ b)})

Figure 3.6: The tableau constructed from the formula 2((# a) ∨ b)
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In Figure 3.7 the tableau is unsuccessful because Q0 is closed. Which is a
result of Q8 and Q14 being closed. Q14 is closed because ⊥ is in the positive
set, and Q8 is closed because every successive node is also closed (something
that can be verified by carefully checking the tableau).

Definition 3.51 (Successful Tableau). For a PNP P , the tableau TP is
unsuccessful when the root node is closed, otherwise, it is successful.

The tableau in Figure 3.6 is a good example of a successful tableau, since
there is the red path from Q0 to Q1 that specifies a terminating path, which
contains no closed nodes (Lemma 3.53). On the other hand, the tableau
constructed from 2#> in Figure 3.7 is closed, since all of the children of
Q0 = ({3 end,2#>}, ∅). This makes sense since the formula used to con-
struct this PNP, 2#>, is not satisfiable, since it is indirect contradiction
with the axiom Finite.

Definition 3.52 (Tableau Path). For a tableau TP for a PNP P , a finite
Kripke structure Kn, and a node Q in TP , we inductively define the path
πK

n
(Q), where Qi represents the ith node in the path πK

n
(Q).

1. Q0 = Q.

2. If Qi has no successor node, then Qi is the last node.

3. If there is only a single successor to Qi, call it Q′, let Qi+1 = Q

4. If Qi has two successor nodes Ql and Qr, then if Kcnt(i)(Q̂l) = true,
set Qi+1 = Ql else set Qi+1 = Ql.

Lemma 3.53 (Tableau Paths Not Closed). Let Q be a node in a tableau

and Kn a finite Kripke structure such that Kn
0 (Q̂) = true. Consider a path

πK
n
(Q) = Q0,Q1, . . . ,Qm, then

(a) πK
n
(Q) does not contain any closed node, and

(b) For every i = 0, . . . ,m, then Kn
cnt(i)(Q̂i) = true.

Proof. See Lemma A.17 for proof. 4

Lemma 3.54 (Terminating Path Existence). Every successful tableau TP for
a PNP P contains a terminating path.
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Node Contents
Q0 ({3 end,2# a}, ∅)
Q1 ({a}, {¬2# a,2¬end})
Q2 ({⊥, a}, {¬2# a})
Q3 ({a,3 end}, {¬2# a})
Q4 ({a,2# a}, {⊥,>})
Q5 ({a}, {>,¬2# a})
Q6 ({ 2# a,# a}, {2¬end})
Q7 ({⊥}, {2¬end})
Q8 ({2# a}, {2¬end})
Q9 ({# a,#3 end}, {⊥,#¬2# a})
Q10 ({# a}, {⊥,#> ∨⊥,#¬2# a})
Q11 ({# a}, {#¬2# a,2¬end})
Q12 ({# a}, {⊥,#>,#¬2# a})
Q13 ({end,# a}, {⊥,#¬2# a})
Q14 ({⊥,2# a}, ∅)
Q15 ({⊥,# a}, {2¬end})
Q16 ({⊥,# a}, {⊥,#¬2# a})
Q17 ({a, 2# a,# a}, {⊥,2¬end})
Q18 ({⊥, a}, {⊥,2¬end})
Q19 ({a,2# a}, {⊥,2¬end})
Q20 ({⊥, a,2# a}, {⊥})
Q21 ({a,# a,#3 end}, {⊥,#¬2# a})
Q22 ({a,# a}, {⊥,#> ∨⊥,#¬2# a})
Q23 ({a,# a}, {⊥,#¬2# a,2¬end})
Q24 ({a,# a}, {⊥,#>,#¬2# a})
Q25 ({a, end,# a}, {⊥,#¬2# a})
Q26 ({⊥, a,# a}, {⊥,2¬end})
Q27 ({⊥, a,# a}, {⊥,#¬2# a})

Figure 3.7: Unsuccessful Tableau evaluating the formula 2#>.

54



Proof. Let TP be a successful tableau for a PNP P . We need to find a path
to a non-closed terminating node that has no successors. We will simply
present a way to construct a terminating path that is not closed. Let π0 =
({3 end} ∪ pos(P), neg(P)). Then, note that π0 is not closed, since is only
node is the root node of a successful tree.

Now consider the general case. Given an arbitrary πi = P0, . . . Pk that has
already been defined, and no node in πi is closed. Hence, by the definition of
closed, Pk as at least one successor that is not closed. Append one of these
successors P ′ to πi to derive πi+1.

Continue until there are no more successors. Now we must demonstrate
that the output of this procedure is terminating. Let Z be the final node.
If Z is not terminating, then 2¬end must be in neg(Z) — and so Z has
a successor. Sincer Z is not closed, it has a successor that it not closed,
contradicting the assumption that Z is final in the path. So, Z must be
terminating. 4

We need to come up with a way to convert between the index of a path
in a tableau, and the index of an η-function in a Kripke structure. To do
this, we will use two functions, idx and cnt. These will be pseudo inverses,
where cnt(idx(i)) = i but idx(cnt(i)) ≥ i. The intuition for this is that cnt
is counting the number of η functions, and idx gives the index of the node
in the path. We define these formally below:

Definition 3.55 (Indexing functions). Given a path π = P0, P1, P2, . . . in a
tableau, define the monotonic function

cntπ(i) = |{j < i | (#) applies to Pj}|

and

idxπ(i) = max{i ∈ N | cnt(i) = k}

We omit the π and just write cnt and idx when the path is obvious from
context.

We use these to define the translation bewteen paths and Kripke struc-
tures.

Lemma 3.56 (Path Modeling). Given a rooted, finite, terminating path π =
P0, P1, P2, . . . , Pn, in a tableau TP for some PNP P. If Kn is a temporal
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structure such that for every v ∈ V and i ∈ N,

v ∈ pos(Pidx(i))⇒ ηi(v) = true

v ∈ neg(Pidx(i))⇒ ηi(v) = false,

then for every v ∈ V and i ∈ N,

a ∈ pos(Pi)⇒ Kcnt(i)(a) = true

a ∈ neg(Pi)⇒ Kcnt(i)(a) = false.

Proof. Let P be a PNP, and TP be a tableau. Let P0, P1, . . . , Pn be a ter-
minating path such that P0 = P . Let Kn be defined such that for every
i ∈ {1, . . . , n} and variable v ∈ V,

v ∈ pos(Pidx(i))⇒ ηi(v) = true

v ∈ neg(Pidx(i))⇒ ηi(v) = false.

Consider an arbitrary node Pi for some i ∈ {1, . . . , n}, and a formula
a ∈ FPi

. Show that a ∈ pos(Pi) means that Kcnt(i)(a) = true and a ∈ neg(Pi)
implies Kcnt(i)(a) = false. We will proceed by induction on the structure of
the formula a, showing only the interesting cases, the remaining ones can be
seen in the proof of Lemma A.18:

Case 1: (a ≡ b → c). Assume a ∈ pos(Pi). At the current “time
slice” we have the nodes Pi, . . . , Pidx(cnt(i)). Since node Pidx(cnt(i))+1

represents an application of (end) or (#), we know that at some index
i ≤ j < idx(cnt(i)), the rule (→+) is applied to a. By construction, it
follows that b ∈ neg(Pj+1) or c ∈ pos(Pj+1). The induction hypothesis
gives that Kn

cnt(j)(A) = true, and that Kn
cnt(j)(A) = true. This gives us

Kn
cnt(j)(A) = true. Note that since i ≤ j < st(cnt(i)), we know that

cnt(j) = cnt(i), and so we conclude that Kn
cnt(i)(A) = true.

Assume, contrarily, that a ∈ neg(Pi). Consider the same “time slice”
portion of the path as above, namely Pi, . . . , Pidx(cnt(i)). By the same
analysis there must be some index i ≤ j ≤ idx(cnt(i)) such that (→−)
is applied to a in Pj. This means that b ∈ pos(Pj+1) and c ∈ neg(Pj+1).
The inductive hypothesis gives that Kn

cnt(j)(a) = true and Kn
cnt(j)(c) =

false. The definition of Kn and the fact that cnt(i) = cnt(j) means
that Kn

cnt(j)(b→ c) = false.
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Case 2: (a ≡ a W b). Let b W c ∈ pos(Pi), and as in previous sub-
proofs, we know that there exists some j ∈ [i, idx(cnt(i))) at which the
(W+) rule is applied to a in Pj. At this point, we know that either c ∈
pos(Pj+1), or b∧ bW c ∈ pos(Pj+1). In the first case, we know by the
inductive hypothesis that Kn

cnt(j)(c) = Kn
cnt(i)(c) = true and so we have

that Kn
cnt(i)(b W c) = true. Otherwise, b ∧  b W c ∈ pos(Pj+1). So,

by a similar argument, we know that Kn
cnt(i)(b) = true. We also know

that #¬bW c ∈ neg(Pidx(cnt(i))), and that ¬bW c ∈ neg(Pidx(cnt(i))+1).
So there is some index k ∈ (idx(cnt(i)), idx(idx(cnt(i)+1))) ⊂ N, such
that a ∈ pos(Pk).

Continue with this process iteratively until the end of the path. One
of two outcomes will occur. Either for every k ≥ cnt(i), we see that
Kn
k (b) = true or there exists some k ≥ cnt(i) such that Kn

k (c) =
true and for every j ∈ (cnt(i), k), Kn

j (b) = true. Either way, we can
conclude that Kn(bW c) = true.

The proof is similar for bW c ∈ neg(Pi).

4

Lemma 3.57 (Tableau Satisfiability). A tableau TP is a successful tableau

for a PNP P if and only if P̂ is satsifiable.

Proof. We prove each direction separately:

(⇒) Let TP be a tableau for a PNP P . Assume that P̂ is satisfiable, to

show that TP is successful. Since P̂ is satisfiable, there is some Kripke
structure Kn such that K0(P̂) = true. Then, Lemma 3.53 gives that
πK

n

P in TP does not contain any closed tableau node, and hence, the
root is not closed, and the tableau successful.

(⇐) Let P be a PNP, and assume that TP is successful. Let P0, P1, · · ·Pn be
a terminating path in TP , whose existence was proven by Lemma 3.54.
Let Kn be a temporal structure such that for every v ∈ V and i ∈ N,

v ∈ pos(Pst(i))⇒ ηi(v) = true

v ∈ neg(Pst(i))⇒ ηi(v) = false
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Then Lemma 3.56 shows that

A ∈ pos(Pi)⇒ Kcnt(i)(A) = true

A ∈ neg(Pi)⇒ Kcnt(i)(A) = false

for all formulae A and i ∈ N. This gives us that Kcnt(0)(P̂0) = true,

which is exactly K0(P̂) = true, and so P̂ is satisfiable.

4

Theorem 3.58 (Decidability of LTLf ). For every formula a of LTLf , the
satisfiability of a is decidable.

Proof. To test if a formula a of LTLf is satisfiable, we can create a PNP

for it P = ({a}, ∅). For an arbitrary Kn, note that Kn(P̂) = Kn(a). This

means that P̂ is satsifiable exactly when a is satisfiable. Lemma 3.57 says
that the tableau TP is successful if and only if there exists a Kn such that
Kn

0 (P̂) = true. Since we can easily (via depth-first search) test whether TP
is successful, we know whether it is decidable. 4
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Chapter 4

Related Work, Applications
and Further Directions

Now that we have seen the standard presentations of LTL and LTLf , we can
look at some extensions of the logics. First, we will consider a translation
of LTLf to LTL and consider which formulae are equivalent in the two set-
tings [7]. Then, we will consider a coinductive proof of completeness for LTLf
(ours is inductive) [29]. Then we will add past time temporal operators to
LTL. This so-called “past-time LTL” has been shown to be sound, complete,
and decidable [24]. Then we will consider the application of Temporal Logic
that motivated this work in the first place, network programming [4], and
conclude with some remarks about other temporal logics.

4.1 Insensitivity to Infiniteness

It is important to note that LTL and LTLf are in fact different logics [7], i.e.
there are nontrivial formulae that are satisfiable in LTL and unsatisfiable in
LTLf . The formula

3 a ∧2(a→ 3 b) ∧2(b→ 3 a) ∧2(¬a ∨ ¬b)
is one such formula. So, when we are trying to decide the satisfiability of
formulae in LTLf , it is insufficient to simply translate the formula to LTL and
evaluate it there. Nonetheless, the line between LTL and LTLf is blurred [7].
We can define a translation finite from LTLf terms to LTL terms that relies
on the infinite replication of a variable done that denotes the end of time.
We define it below.

59



Definition 4.1 (LTLf -LTL Translation). Given a formula f ∈ LTLf (V),
translate f into LTL by introducting a fresh proposition done, such that
done 6∈ V. Further, require that 3 done holds, that 2(done → # done), and
that all other propositions are false, i.e. that 2(done →

∧
v1∈V ¬v1). Define

the function finite : LTLf (V)→ LTL(V ∪ {done}) by

finite(v) = v

finite(end) = # done

finite(¬a) = ¬finite(a)

finite(a→ b) = finite(a)→ finite(b)

finite(# a) = #(finite(a) ∧ ¬done)

finite(a U b) = finite(a) U (finite(a) ∧ ¬done)

Given a finite Kripke structure Kn = (η1, . . . , ηn), let

finite(Kn) = (η1, . . . , ηn, η⊥, η⊥, . . .),

where η⊥(done) = true and for every other formula c, η⊥(c) = false.

Now we define a formula a to be insensitive to infiniteness a is true in
both the finite and infinite setting under this translation, i.e.

�Kn a⇔�finite(Kn) a.

So, we can define a formula that must be true on Kn to determine if a
given formula a is insensitive to infiniteness.

Theorem 4.2 (Insensitivity to Infiniteness). A formula a ∈ LTLf (V) is in-
sensitive to infiniteness if and only if the following LTL(V∪{done}) formula
is valid:

(3 done ∧2(done → # done) ∧2(done →
∧
v∈V

¬v)→ (c↔ finite(c)))

Proof. See [7] for proof 4

Example 4.3. The formula 3¬a is sensitive to infiniteness. We can observe
this simply by noting that 3¬a is satisfiable but not valid in LTLf . However,
it is valid in our translated LTLf . For any finite Kripke structure and any i,
we see that finite(Kn)i(3¬a) = true, because we know 3 done evaluates to
true, and that done→ ¬a evaluates to true.
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Remark 4.4. Example 4.3 points out a philisophical difference between
LTLf and this translation into LTL. In LTLf , once you reach the end of
time, there is nothing, it doesn’t make sense to ask if a formula is true or if it
is false, because there is nothing to ask about. However, in these η⊥ states,
all variables are false, so things still exist, but hang around as ghosts.

A colloquial example highlighting this distinction regards a soccer match.
After the conclusion of the 90 minutes, two fans might make very similar
proclamations two versions of the same question, fan A says is “I hope Dro-
goba doesn’t score in the next few minutes!”, and fan B says “I hope Drogoba
doesn’t score again in the game!” Both of these allow the fans to conclude
that Drogoba in fact won’t score, but for fan A, it is because Drogoba is in
the locker room and not scoring points, where for fan B it is because the
game is over, and so of course, noone can score.

The authors of [7] are sure to stress that this is broadly insufficient for
most practical purposes, and go on propose improved process modeling tech-
niques for LTLf to make the logic more usable in model-checking. They
provide a decision procedure based on the Past-Time Model 4.3, which runs
in EXPTIME and PSPACE.

This work makes it clear that a distinct decision procedure for LTLf is
necessary, as well as motivating the need for a sound and complete axioma-
tization, to allow for proofs about increasingly useful logic.

4.2 Coinductive Completeness

The first soundness and completeness results for LTLf used a coinductive
axiomatic framework [29]. They use a completely analogous semantics, but
use axioms and inference rules identified in Figure 4.1.

The main differences are the existence of the CoInduct and AlwStep
rules. We have the same number of rules, but take a more natural approach,
preferring to start at the beginning instead of at the end for our inductive
inference rules.

Theorem 4.5 (Coinductive Soundness). The coinductive proof theory is
sound.

Proof. Show all of the axioms and inference rules are valid [29] 4
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all propositional tautologies (Taut)
`  (a→ b)→ ( a→  b) (NextDistr)

` ¬ a→  ¬a (NegNext)
` aW b↔ (b ∨ a ∧ (aW b)) (WkUntilUnroll)

` a
`  a

(NextStep)

`  a→ a

` a
(CoInduct)

` a
` 2 a

(AlwStep)

Figure 4.1: Coinductive proof system for LTLf

Theorem 4.6 (Coinductive Completeness). The coinductive proof theory is
complete.

Proof Idea. Create a graph of all possible PNPs and the transitions between
them via a greatest fixpoint method. Prune away maximal connected com-
ponents that do not contain satisfying paths [29]. 4

4.3 An Extension to the Past

Past-Time LTL [24] introduces past-time operators into LTL. In this model
of time, we still have a fixed starting point, and time only moves forwards,
however we can now ask questions like “two states ago, did a always hold?”.
The syntax is presented below, with the previous state operator P, and the
binary “back-to” operator B.

Definition 4.7 (Syntax for Past-Time LTL [24]). Let V be a set of variables,
then we can define the syntax for past-time LTL as

a, b ::= v ∈ V | ⊥ | a→ b | (From Classical)

X a | a W b | (From LTL)

P a | a B b (Past-Time operators)

Note that we are using X to refer to the “next” operator, that we denoted
as # in the previous section, and P to refer to the “last” operator, the past
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time version of X. We have similar changes for the operator meaning “always
in the past”, denoted as A, or “ever in the past”, denoted as E. We maintain
the pieces of syntactic sugar that we defined in Example 3.4, and adding
several others:

Definition 4.8 (Syntactic Sugar for Past-Time LTL). Define the following
sugarings for past-time LTL

A a , a B ⊥ (4.1)

E a , ¬A¬a (4.2)

a S b , a B b ∧ E b (4.3)

WP a , ¬P¬a (4.4)

WX a , ¬X¬a (4.5)

start , ¬P> (4.6)

The naming convention for the binary temporal operator is slightly dif-
ferent in the past setting. We pronounce B as “back to”, referencing the past
equivalent of W, whereas we pronounce S as “since”, referencing the past
equivalent of U. Accordingly, B is sometimes pronounced as “weak since.”

Now that we have the syntax for the logic, we can define a similar �
relation to the one developed in Section 3.2. The semantics are defined
generally, for finite or infinite time. We will use the notation K(n) to refer
to a kripke structure that could be finite or infinite, and Kn or K when we
want to differentiate between the two cases.

Definition 4.9 (Valuation Function for Past-Time LTL). Let K(n) be a

(finite) Kripke structure, define the function K
(n)
i forall 0 < i(< n) as
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K
(n)
i (v) = ηi(v)

K
(n)
i (⊥) = false

K
(n)
i (a→ b) =


true if K

(n)
i (a) = false

true if K
(n)
i (b) = true

false otherwise

K
(n)
i (X a) =

{
Kn
i+1(a) if i < n

false otherwise

K
(n)
i (a W b) =


true if K

(n)
j (a) = true, for all i ≤ j ≤ n

true if there exists i ≤ k ≤ n, such that K
(n)
k (b) = true

and for every j such that i ≤ j < k,K
(n)
i (a) = true

false otherwise

K
(n)
i (P a) =

{
K

(n)
i−1(a) if i > 0

⊥ otherwise

K
(n)
i (a B b) =


true if K

(n)
j (a) = true, for all i ≥ j ≥ 0

true if there exists i ≥ k ≥ 0, such that K
(n)
k (b) = true

and for every j such that i ≥ j > k,K
(n)
i (a) = true

false otherwise

These semantics are unsurprising, the forward-time operators have the
exact same interpretaton, and the past-time operators begin interpreted in a
completely analogous way. The last piece we need is the proof theory.

Definition 4.10 (Proof System for Past-Time LTL). The axioms for Past-
Time LTL are:
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P1 ` ¬P a↔ WP¬a F1 ` ¬X a↔ WX¬a
P2 ` P a→ WP a F2 ` X a→ WX a
P3 ` a→ WP X a F3 ` a→ WX P a
P4 ` WP(a→ b)→ (WP a→ WP b) F4 ` WX(a→ b)→ (WP a→ WP b)
P5 ` ¬E a↔ A¬a F5 ` ¬F a↔ G¬a
P6 ` A(a→ b)↔ (A a→ A b) F6 ` G(a→ b)↔ (G a→ G b)
P7 ` A a→ WP a F7 ` G a→ WX a
P8 ` A(a→ WP a)→ (a→ A a) F8 ` G(a→ WX a)→ (a→ G a)
P9 ` a S b↔ b ∨ [a ∧ P(a S b)] F9 ` a U b↔ b ∨ [a ∧ X(a U b)]
P10 ` E start F10 ` a U b→ F b

And then we can define the three inference rules:

R1 For a propositional tautology p, ` p.
R2 a→ b, a ` b
R3 a ` G a ∧ A a

We can point out a clear difference between LTL and LTLf . One might
thing that the past-time axioms P1-10 would completely specify LTLf and
the forward-time axioms F1-10 would completely specify LTL. However, we
notice that the axiom P3 cannot even be stated in LTLf . This is a key axiom
to use and leverage in certain proofs [25, 24]. Hence, our system, which omits
this ability to transition between past and forward time, and forces a finite
model of time presents a truly distinct sytem.

We see that Past-Time LTL is decidable, [24], and that completeness is
a direct consequence of their decision procedure, which uses a greatest fixed
point approach, as opposed to our least fixpoint approach.

Theorem 4.11 (Decidability). Satisfiability (and validity) in Past-Time
LTL are decidable.

Theorem 4.12 (Completeness). Past-Time LTL is complete.

4.4 Network Applications

With the rise of the Internet and the increasing interconnectedness of the
global computational architecture, there is an increasing need for verifiable
methods of computing across multiple connected devices. Until quite re-
cently [12], the main method of creating networks was to write hardware-
specific code on each of the individual servers and switches and hope to
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coordinate certain ideal properties of the network. This is extremely ardu-
ous to make rigorous, and invariably, networks created this way are severely
succeptible to attackers, who can exploit this lack of rigor.

Netkat is the proposed solution to this problem [1], creates a unified
top-level language with an abstract hardware-agnostic representation of a
switch, allowing for formal, rigorous reasoning about network topologies,
and forwarding strategies. This formal system is called Netkat, short for
Network Kleene Algebra with Tests. The basis of the language is Kleene
Algebra (ka) used to model regular expressions. This is extended to Kleene
Algebra with Tests (kat), adding adds boolean comparison to the language,
which adds axioms enabling network programming, creating Netkat.

The true innovation of Netkat is that it is a formal system that easily
models network topology, allows for the programming of specific forwarding
policies, and allows for axiomatic proofs regarding those policies. A problem
here is that these specifications become intractably large as the topology
increases in size. The reason is this: as a network packet traverses the
network, it accumulates a packet history, which is a list of vectors, the head
of which is the current state of the packet (destination, addresses, type,
etc). Unfortunately Netkat policies can only ask questions about the current
state, the head of this list. This is a less-than-efficient construction, since we
are storing this packet history, but are unable to do anything with it.

Temporal Netkat [4], an extension of Netkat, leverages the packet his-
tory to increase expressivity. To do this, Temporal Netkat adds LTLf to
standard Netkat. We have been primarly examining its expression for for-
wards time; however, as we saw in Section 4.3, we can easily turn it around
to express statements about the packet history. Importantly, we might ask
questions such as “Has the packet ever been through a firewall?” or “Did
the packet just come from some secure switch x?”.

Temporal Netkat does have succeed in proving soundness and decid-
ability properties. It is formulated use an equational theory instead of an
axiomatic framework. So their axioms are in the form a ≡ b. Notice that this
is effectively the same as saying ` a↔ b. They also prove a modified version
of Completeness for their equational theory. We present the LTLf portion of
the axioms translated into our metatheoretical notation in Figure 4.2

Theorem 4.13 (Temporal Netkat Partial completeness). For two arbitrary
formulae of Temporal Netkat, if [start; a] = [start; b], then start; a ≡ start; b

Now that we have a proof of completeness for LTLf , we can derive a proof
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` # a ∧# b↔ #(a ∧ b) (ltl-last-dist-seq)
` # a ∨# b↔ #(a ∨ b) (ltl-last-dist-plus)

`  > (ltl-wlast-one)
` a U b↔ b ∨ a ∧#(a U b) (ltl-since-unroll)

` ¬(a U b)↔ (¬b)W (¬a ∧ ¬b) (ltl-not-since)

` a→  a ∧ b
` a→ 2 b

(ltl-induction)

` 2 a→ 3(end ∧ a) (ltl-finite)

Figure 4.2: LTLf Rules and axioms in Temporal Netkat

of completeness for Temporal Netkat.

Theorem 4.14 (Temporal Netkat Completeness). If [a] = [b] then a ≡ b.

Proof Idea. We have some formulae a and b, and we know that [a] = [b].
This is translated to [a↔ b] = [true]. Now, the following table links the
Temporal Netkat Axioms with equivalent LTLf axioms.

LTLf Rule Temporal Netkat Axiom
NextAndDistr ltl-last-dist-seq
NextOrDistr ltl-last-dist-plus
WkNextTop ltl-wlast-one
UntilUnroll ltl-since-unroll
NotUntil ltl-not-since
Induction’ ltl-induction
AlwaysFinite ltl-finite

The above table shows the equivalent versions of all of the LTLf related
Temporal Netkat Axioms. We can also show that our LTLf axioms can
be proved in Temporal Netkat. Hence, LTLf and the Temporal Netkat
Axioms are equivalent. 4

4.5 Further Directions

We have shown soundness, completeness, and decidability for a finite version
of the infinite temporal logics. What if we look at other kinds of temporal
logics? A close variant of LTL, known as Linear Dynamic Logic, or LDL, does
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away with the assumption that every successor state is unique. It has already
been studied in the finite setting [8], and it could be fairly straightforward to
extend some of the observations and techniques made here to find soundness
and completeness results for this logic. Computation tree logic, or CTL for
short, is more complicated, in that it defines predicates in future temporal
timelines, it is possible that soundness and completeness results could be
found for some hypothetical CTLf , or Finite Computation Tree Logic. We
might also consider other temporal logics.

4.6 Conclusion

The main contribution of this work is a sound and complete proof theory
for LTLf along with a decision procedure for satsifiability (Section 3). The
proof structures and basic procedures largely outline the work presented by
Kroger and Merz on Linear Temporal Logic [21], the general outline, graph
construction and many of the definitions are largely based on their work.
However, we have made several key additional contributions, aside from the
translation to the finite setting. We formulated the system using the binary
weak until (· W ·) operator instead of the always (2 ·) operator, making our
presentation slightly more general. We also have clarified many definitions
and presented proofs in a slightly more formal way, with the addition of the
comps function (Definition 3.29). Part of this is due to our presentation and
some of it is due to our formalism, and part of it is due to the fact that the
finite setting allows us to prove slightly simpler properties.

A further contribution is the insertion of the completeness and decid-
ability results for LTLf into the Temporal Netkat framework (Section 4.4).
This extends their partail completeness and decidability results that hinge
on packet histories having a symbolically identified start point, allowing the
authors to derive general, compositional completeness and decidability re-
sults.

Our secondary contributions are a introduction to metamathematical in-
quiry intended for undergraduate mathematics students (Section 1), and a
summary of the semantics, sound proof theory, and completeness properties
for LTL (Section 2). This is a slightly modified version of what is presented by
Kroger & Merz [21], again using the weak until operator instead of the always
operator. We also present a summary of related results regarding LTLf , in
terms of related logics(Sections 4.2 and 4.3) and in terms of properties about
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LTLf itself (Section 4.1).
We expect that these results will encourage the use of LTLf more ap-

plication domains, and motivate further research into more efficient decision
procedures.
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Appendix A

Auxiliary Proofs

A.1 Semantics

Lemma A.1 (Totality). For every Kripke structure Kn, every i ∈ {1, . . . , n},
and an arbitrary formula a, then Kn

i (a) = true or Kn
i (a) = false.

Proof. Let a ∈ LTLf (V), and Kn be a finite Kripke structure of length n.
Let i ∈ {1, . . . , n}. It is easy to show by structural induction that Kn

i (a) is
defined. Hence, Kn

i is a total function on LTLf (V). 4

Lemma A.2 (Always Convergence). Given a Kripke structure of length n,
and a formula a of LTLf (V) then Kn

n(2 a) = Kn
n(a)

Proof. Immediate, by definition of the evaluation function. Kn
n(2 a) = true

if and only if Kn
j (a) = true for all n ≤ j ≤ n. So j must be n. Since

Kn
n(2 a) = true if and only if Kn

n(a) = true, we can conclude that Kn
n(2 a) =

Kn
n(a). 4

Corollary A.3 (Finite is Truncated). Given a finite Kripke structure Kn =
(η1, η2, · · · , ηn) and an infinite Kripke structure K = (η′1, η

′
2, η
′
3, · · · ), such

that ηi = η′i, �Kn a if and only if �K[n] a.

Proof. We proceed by induction on the size of Kn. For the base case, let
n = 1. Then K1 = (η1) and K[1] = [η1]. So it is clear that �Kn a if and only
if �K[n] a.

Now consider a general n. Then Kn = (η1, η2 · · · , ηn), and K[n] =
[η1, η2, · · · , ηn]. Create modified structures Ln−1 = (η2, · · · , ηn) and L =
(η2, η3 · · · , ηn, · · · ). Then by the induction hypothesis we know that �Ln−1 a
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if and only if �L[n−1] a. So for K[n]i(a) = Kn
i (a) for all a and 1 < i ≤ n. So

we need to consider the case that i = 1. We see that K[n]1(a) = Kn
1 (a) by

definition and the inductive hypothesis. 4

Lemma A.4 (Semantic Modus Ponens). For a given set of formulae F , with
a, b formulae, if F � a and F � a→ b, then F � b.

Proof. Let F be a given set of formulae, and let a and b formula. Assume
that (i) F � a and (ii) F � a ∧ b to show that F � b. Let Kn be a Kripke
structure in which F �Kn a, and F �Kn a → b. Let i ∈ {1, . . . , n}, to show
Kn
i (b) = true. By definition of �, we have Kn

i (a) = true (from (i)) and that
either Kn

i (a) = false or Kn
i (b) = true (from (ii)). If we are in the case where

Kn
i (b) = true, we are done; however the other case, wherein Kn

i (a) = false,
is contradictory, since Kn

i (a) = true. So Kn
i (b) = true and F � b.

4

Lemma A.5 (Assumption of Temporal Operators). For a set of formulae
F , then F ∪ {a,#>} � # a and F ∪ {a} � 2 a.

Proof. Let Kn be a finite Kripke structure such that �Kn b for every b ∈ F
and i ∈ [n], including a. In otherwords, �Kn a for every i ∈ [n], which gives
F � 2 a, and a specialization gives Kn

i+1(a) for i < n, meaning F � # a. We
know that i 6= n by contradiction. If it were the case, then K(#>) = false,
which contradicts the assumption. 4

Corollary A.6 (Next Assumption).

#> � ⊥

Proof. We want to show that for an arbitrary finite Kripke structure, Kn,
such that Kn

i (#>) = true, we can derive Kn
i (⊥) = true. However, in fact,

the assumption fails, because Kn
n(#>) = false. The result follows. 4

A.2 Proof Theory

Theorem A.7 (Soundness Theorem for LTLf ). Let a be a formula and F a
set of formulae. If ` a, then � a.

Proof. By structural induction on ` a:
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(Taut) a is a propositional tautology. Following Theorem 2.2.1 in
Kroger-Merz [21], all propositional tautologies are valid. Their proof
applies for our syntax, replacing formulae mutatis mutandis.

(NextDistr) We want to show that �  (a→ b)↔ ( a→  b). Show
each direction separately.

(→) Let Kn be an arbitrary finite Kripke Structure and i an arbitrary
index, to show that Kn

i ( (a → b) → ( a →  b) = true. This
breaks down into two cases.

(Kn
i ( (a→ b)) = false) Immediate.

(Kn
i ( (a→ b)) = true) Now, we must show that Kn

i ( a →
 b) = true. Now, if i = n, then Kn

i ( b) = true (be-
cause time has ended) and so Kn

i ( a →  b) = true, and
we’re done. Otherwise, i 6= n, and so we can step the val-
uation function to see Kn

i (#¬(a → b) = false, and again
to see Kn

i+1(¬(a → b) = false) and once more to see that
Kn
i+1(a→ b) = true). Now, we have two cases

(Kn
i+1(a) = false) Now we can add the ¬ constructor and
see that Kn

i+1(¬a) = true and again the # constructor to
get Kn

i (#¬a) = true, and once more apply the ¬ rules,
and add the  sugar to get Kn

i ( a) = false. Finally we
cann apply the → construction and get Kn

i ( a→  b).
(Kn

i+1(b) = true) Add the ¬ constructor and its valuation
to get Kn

i+1(¬b) = false, followed by the same for #, to
see Kn

i+1(#¬b) = false. Then, once more negation and
the syntactic sugar for weak next gives Kn

i ( b) = true,
which allows the conclusion Kn

i ( a→  b) = true using
the implication valuation rule.

(←) Let Kn be an an arbitrary finite Kripke structure, and i be an
arbitrary index, to show that Kn

i (( a →  b) →  (a → b)) =
true. If Kn

i ( a →  b) = false, then we’re done. Otherwise,
Kn
i ( a →  b) = true and we must show that Kn

i ( (a → b)) =
true. Now, we have two cases:

(Kn
i ( a) = false) We can desugar  a to ¬#¬a. Then we can

step the valuation function forward to get Kn
i+1(a) = false.

Then we can see Kn
i+1(b) = true. Now using the implication
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constructor we can see Kn
i+1(a→ b) = true, which again using

the weak next sugar lets us conclude Kn
i ( (a→ b) = true.

(Kn
i ( b) = true) If i = n we can immediately concludeKn

i ( (a→
b)) = true. Otherwise, We use the weak next sugar to  a
to ¬#¬a, which gives Kn

i+1(b) = true. Then using the im-
plication case for the valuation function , we can construct
Kn
i+1(a→ b) = true, which again using the weak next sugar,

lets us conclude that Kn
i ( a→ b) = T .

(EndNextContra) We want to show that � end → ¬# a. So given
some finite Kripke structure Kn and an arbitrary index i, we have
two cases, either Kn

i (end) = false and we’re done, or Kn
i (end) =

Kn
i (¬#>) = true and we need to show that Kn

i (¬# a) = true. The
only way that Kn

i (¬#>) could be false is if i = n, in which case
Kn
i (# a) is also false. Then applying the negation case of the valua-

tion function gives Kn
i (¬# a) = true.

(Finite) Assume we have a proof that ` 3 end. We want to show that
� 3 end. We can desugar this to a form that the Kn

i functions will un-
derstand, namely � ¬((#>)W ⊥). Take an arbitrary function Kripke
structure Kn and an arbitrary index i, to show that Kn

i (¬((#>) W
⊥)) = true. Equivalently, we show that Kn

i (((#>) W ⊥)) = false.
Since we know that Kn

k (⊥) = false for all possible k, we must find
an index j ∈ [i, n] such that Kn

j (#>) = false. Let j = n, then by
definition Kn

j (#>) = Kn
n(#>) = false.

(WkUntilUnroll) We have derivation of ` (aW b)→ b∨a∧ (aW
b). We must show that � (a W b) → b ∨ a ∧  (a W b), specifically,
we must show that for an arbitrary finite Kripke structure Kn and
arbitrary index i ∈ {1, . . . , n}, that Kn

i ((aW b)→ b∨a∧ (aW b)) =
true. By definition, we can equivalently show that Kn

i (aW b) = false,
or Kn

i (b ∨ a ∧  (a W b)) = true. Assume Kn
i (a W b) = true (since

otherwise we are done), and show that Kn
i (b ∨ a ∧  (a W b) = true.

So, we know that there exists some j ∈ [i, n] such that Kn
j (b) = true

and for all k ∈ [i, j), Kn
k (a) = true. There are two cases, j = i, or

j > i. If j = i, then we know that Kn(b) = true, and the result
follows by definition. Otherwise, j > i, and so Kn

i (a) = true. Note
also that either Kn

i+1(aW b) = true, or i = n. If i = n we are done, so
consider the other case, which by using the next case of the valuation
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function definition, and then the weak next syntactic sugar to create
Kn
i (#(a W b) = Kn

i ( (a W b) = true. Then, by the implication case
and the disjunctive syntactic sugar we can construct Kn

i (b∧a∨ (aW
b) = true

(WkNextStep) We know that a `  a, so we need to show that a �
 a. Consider an arbitrary Kn such that Kn

i (a) = true for all i =
1, . . . , n. We need to show that for an arbitrary Kn

i , Kn
i ( a) = true.

There are two cases, either i = n, or i < n. If i = n, then we need
to show that Kn

n(#¬a) = false, which holds by definition. Otherwise,
show that Kn

i (#¬a) = Kn
i+1(¬a) = false. Equivalently show that

Kn
i+1(a) = true, which we know from our construction of Kn.

(Induction) We assume that we have ` b → c and ` b →  b. The
induction hypothesis allows us to interpret these semantically, i.e. F �
b→ c and F � b→  b. Let Kn be an arbitrary Kripke structure such
that F �Kn (b → c) and F �Kn b →  b. So if Kn

i (b) = false, we can
use the implication case of the valuation function to show Kn

i (b→ 2 c).
So, assume that Kn

i (b) = true. Then, Kn
i (c) = true and Kn

i ( b) =
true. We want to show Kn

i (2 b), i.e. for all i ≤ j ≤ n, Kn
j (2 b). When

i = j the result follows by assumption, and when j = n, the result
follows by definition of the weak next case of the valuation function. In
every other case (such that it exists), we can assume Kj−1( a) = true,
and since j < n, we know Kn

j (a) = true by the definition of the weak
next sugar, and the negation and next cases of the valuation function.

4

Theorem A.8 (Deduction Theorem). Let a, b be formulae, F a set of for-
mulae. F , a ` b if and only if F ` 2 a→ b.

Proof. Prove each direction separately.

(⇒) We assume that F , a ` b to show that F ` 2 a → b. Proceed by
structural induction on the derivation of b from F , a.

Case 1: Assume that b is an axiom, or b ∈ F . Then, F ` b and
F ` 2 a→ b follows with Taut

Case 2: Assume that b ≡ a. Then we know from AlwaysUnroll,
that ` 2 a→ (a∧ 2 a), which simplifies to ` 2 a→ a by Taut.
Now, we can freely add more conditions and see that F ` 2 a→ a.
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Case 3: Assume that b ≡  c is a conclusion of WkNextStep. So,
we must also have F , a ` c. Then applying the induction hypoth-
esis, we get F ` 2 a → c. Now we show that from these we can
derive 2 a→ # c.

1. 2 a→ c shown so far

2. 2 a→ #> shown so far

3.  (2 a→ c) WkNext, 1

4.  2 a→  c WkNextDistr, 3

5. 2 a→ a ∧ 2 a AlwUnroll

6. 2 a→  2 a Taut, 5

7. 2 a→  c Taut, 6, 4

Case 4: Assume that b ≡ c → 2 d. Is a conclusion of Induction
with premises c → d and c →  c. Then we get the inductive
hypotheses that F ` 2 a → (c → d) and F ` 2 a → (c →  c).
Then, we can derive 2 a → (c → 2 d) by Taut, WkNextAnd-
Distr and Induction.

1. 2 a→ (c→ d) derivable

2. 2 a→ (c→  c) derivable

3. 2 a ∧ c→ d Taut, 1

4. 2 a ∧ c→  c Taut, 1

5. 2 a→  2 a Taut,AlwUnroll

6. 2 a ∧ c→  2 a ∧ c Taut, 4, 5

7.  2 a ∧ c→  (2 a ∧ c) WkNextAndDistr

8. 2 a ∧ c→  (2 a ∧ c) Taut, 6, 7

9. 2 a ∧ c→ 2 d Induction, 3, 8

10. 2 a→ c→ 2 d Taut, 9

(⇐) Assume that F ` 2 a→ b to show that F , a ` b. If F ` 2 a→ b, then
F , a ` 2 a → b. Then, since F , a ` a, we need to show F , a ` 2 a, or
more specifically that a ` 2 a. Then we get F , a ` b by Taut.
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It remains to be shown that a ` 2 a. Assume a. Then by WkNext
we get  a. Then by Taut we derive a →  a. Then by Induction,
we get a→ 2 a, and then finally by Taut, we get 2 a.

4

Lemma A.9 (Next-Step Implication). Let P be a PNP

` P̂ →  σ̂(P)

Proof. By cases on σi, ` P̂ →  c when c ∈ σ1(P)∪σ2(P), and ` P̂ →  ¬c
when c ∈ σ3(P) ∪ σ4(P). The proposition follows directly from this and

WkNextAndDistr. In fact the cases will be for when c ∈ σ
+/−
i (P), for

each i = 1, 2, 3, 4, 5.

1. If c ∈ σ+
1 (P), then # c ∈ pos(P), so P̂ →  c by Taut and P̂ →  c.

2. If c ∈ σ+
2 (P) then c ≡ a W b ∈ pos(P), and b ∈ neg(P). So, `

P̂ → ¬b ∧ a W b by Taut. Then, WkUntilUnroll proves P̂ →
¬b ∧ (b ∨ a ∨ aW b). Conclude that P̂ →  aW b holds by Taut.

3. If c ∈ σ+
3 (P) then c ≡ a W b ∈ pos(P). We know that ` P̂ → end, so

` P̂ →  σ̂(P) is apparent by CommNegNext.

4. If c ∈ σ−4 (P), then # c ∈ neg(P). We can say that ` P̂ → ¬# c.
We want to show that P̂ implies  ¬c, which is equivalent to ¬#¬¬c,
which is then equivalent to ¬# c, by Taut. Hence ` P̂ →  ¬c.

5. If c ∈ σ−5 (P), then 2 c ∈ neg(P) and c ∈ pos(P), so ` P̂ → (¬2 c∧ c),
then by AlwUnroll, we get ` P̂ → c∧(¬c∨#¬2 a). Then by Taut,
we can simplify this to ` #2 c, and by NextWkNext, conclude
` P̂ →  ¬2 c.

4

A.3 Completeness

Lemma A.10 (PNPs are Well-Behaved). Let P = (F+,F−) be a consistent
PNP, and a, b be formulae, then
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1. F+ and F− are disjoint

2. Either (F+,F− ∪ {a}) or (F+ ∪ {a},F−) is a consistent PNP

3. ⊥ 6∈ F+

4. If, a, b, a→ b ∈ FP , then if a ∈ F− or b ∈ F+, a→ b ∈ F+, otherwise
a→ b ∈ F−.

5. If a→ b, a, b ∈ FP , then if a→ b ∈ F+, and a ∈ F+, then b ∈ F+.

Proof.

1. Assume F+ ∩ F− is nonempty, and pick some a ∈ F+ ∩ F−. The
` P̂ → a∧¬a, so conclude ` ¬P̂ , which contradicts the consistency of
` P̂ .

2. If a ∈ F+ or a ∈ F− we have (F+∪{a},F−) = P , or (F+,F−∪{a}) =
P and the assertion follows by the consistency of P . Otherwise, we as-
sume for the sake of contradiction, that both pairs under consideration
are inconsistent, which in turn gives ` ¬(P̂ ∧a) and ` ¬(P̂ ∧¬a). This

gives a contradiction since Taut gives ` ¬P̂ . Hence at least one of the
pairs must be consistent.

3. Assume ⊥ ∈ F+. Then ` P̂ → ⊥ by Taut, which contradicts the
consistency of P , so ⊥ 6∈ F+.

4. Assume that a → b ∈ F+, but a 6∈ F− and b 6∈ F+. Since a, b ∈ FP ,
a ∈ F+ and b ∈ F−. Then ` P̂ → a ∧ ¬b ∧ (a→ b) which yield ` ¬P̂
by Taut. The contradiction demonstrates that a ∈ F− or a ∈ F+.
To show the other direction, assume that a ∈ F− or b ∈ F+. For
the sake of contradiction assume that a → b 6∈ F+ which means that
a→ b ∈ F−. This gives ` P̂ → ¬(a→ b) ∧ ¬a or ` P̂ → ¬(a→ b) ∧ b
which both give ` ¬P̂ by Taut. Conclude a→ b ∈ F+.

5. Assume that b 6∈ F+. Then b ∈ F−, which gives ` P̂ → a ∧ ¬b. We
also see that ` P̂ → (a → b). Then by Taut we get ` ¬P̂ , which
proves that b ∈ F+ by contradiction to the consistency of P .

4
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Lemma A.11 (Consistent Completion Existence). For P, a consistent PNP,
and

` P̂ →
∨

Q∈comps(P)

Q̂

Proof. Let P be a consistent PNP, and let P1, · · · ,Pm be those PNPs with
disjoint positive and negative sets such that τ(P) = τ(Pi), for all i =
1, . . . ,m. Let P ′1, · · · ,P ′n be those P ′i which are in comps(P). Without loss
of generality, relabel P1, · · · ,Pm such that P ′j = Pi with i = 1, . . . ,m and
j = 1, . . . , n.

Then, for m > i > n, either Pi is inconsistent, or pos(P) 6⊆ pos(Pi) and

neg(P) 6⊆ pos(Pi). In either case, we obtain ` P̂ → ¬P̂ ′i by Taut for every

i > n. From Lemma 3.31, we get that `
∨m
i=1 P̂ ′i. Then we can eliminate the

bad cases, and get ` P̂ →
∨n
i=1 P̂ ′i. 4

Lemma A.12 (All Nodes Have Successors). Let P be a consistent and com-
plete PNP, and Q1, · · · ,Qn the nodes of GP .

`
n∨
i=1

Q̂i →  
n∨
i=1

Q̂i

Proof. From Lemma 3.25, we have ` Qi →  σ̂(Qi) for each i = 1, · · ·n.
Let Q′i1 , · · · ,Q

′
im be the m completions of σ(Qi), by Lemma 3.33, we get

that ` σ̂(Qi) →
∨n
j=1Q′ij . Since by the definition of GP we have Q′ij ∈

{Qi, · · · ,Qm}, which in our proof system is represented by ` Q̂′ij →
∨m
k=1Qk

for each j ∈ [m]. Since each Q′ij , (a completion of σ(Qi)) implies another
node in the tree, and σ(Qi) implies each of its completions, we can chain

these to get ` σ̂(Qi)→
∨n
k=1 Q̂k. Then, by WkNext and NextDistr, we

get `  σ̂Qi →  
∨
k+1 Q̂k, and we get the result ` Q̂i →  

∨n
k=1Qk for each

i ∈ [n]. The result follows by Taut. 4

Lemma A.13. Every terminal path is a fulfilling path.

Proof. Consider a terminal path π = P1,P2, · · · ,Pn,Z. Let S be the set
of temporal formulae in π. Consider the terminal node Z. Either there are
no temporal formulae in FZ , or there is at least one. In the first case, we
are done, since every temporal formula has been fulfilled. So, consider the
second case, where we have some set S ′ = FZ ∩ S of exactly the temporal
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operators that haven’t been fulfilled by the last state. We will show that
they are fulfilled by the final state. The elements of S ′ can either be of the
form # a or of the form aW b, and can be either in the positive or negative
sets. We will examine each of these cases:

Case 1 (# a ∈ FZ). This is trivial by definition of σ.

Case 2 (aW b ∈ FZ). Here we have two subcases:

Case 2a (a W b ∈ pos(Z)). Since Z is consistent, we have ` Ẑ →
b ∨ a ∧  (a W b) by WkUntilUnroll. Since we also have

` Ẑ → end by definition of a terminal node, we get ` Ẑ → b ∨ a.
Since b, a ∈ τ(aW b), we know that b or a is in pos(Z), so aW b
is fulfilled.

Case 2b (a W b ∈ neg(Z)). We know ` Ẑ → ¬(a W b), which gives

` Ẑ → ¬(b ∨ a ∧  (a W b))). Since we know ` Ẑ → end, by
the definition of a terminal node,  (a W b) becomes >. So we

have ` Ẑ → ¬b ∨ a, or equivalently ` Ẑ → ¬b ∧ ¬a. Since a
and b are subformulae of a W b, and a W b ∈ neg(Z), then also
a, b ∈ neg(Z). Hence aW b 6∈ τ(σ(Z)).

4

Theorem A.14 (Satisfiability Theorem for LTLf ). For any consistent PNP

P, the formula P̂ is satisfiable.

Proof. P ′ = ({3 end} ∪ pos(P), neg(P)) is a consistent PNP, P∗ is a com-
pletion of P ′. And P0, P1, · · · , Pn a complete, finite, rooted path of length n
(by Lemma 3.41) in GP∗. Define Kn = (η0, η1, · · · , ηn) by

ηi(v) = true if v ∈ F+
i

ηi(v) = false otherwise

We want to show that Kn
0 (P̂) = true. This is equivalent to showing that

Kn
0 (P̂ ′) = true, which is also equivalent to showing that Kn

0 (P̂0) = true.
Proving this is hard, so we will generalize the hypothesis making it easier to
prove. We will show that for PNP Pi, and f ∈ FPi

, then Kn
i (f) = true iff

f ∈ pos(Pi), and Kn
i (f) = false otherwise.

We proceed by induction on the derivation of an arbitrary formula f :
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(f = v ∈ V). This is proved by the definition of Kn.

(f = ⊥). By definition of Kn
i , Kn

i (⊥) = false and ⊥ 6∈ F+
i by

Lemma 3.22.

(f = a→ b). Since Pi is a complete PNP, we have that a, b ∈ F+∪F−.
The inductive hypothesis allows us to conclude that Kn

i (a) = false iff
a 6∈ F+

i . It also allows the conclusion Kn
i (b) = true iff b ∈ F+

i . Then,
Kn
i (a → b) = true if and only if Kn

i (a) = false or Kn
i (b) = true, we

can apply the inductive hypotheses to get a ∈ F−i or b ∈ F+
i . Then by

Lemma 3.22, we can conclude that a→ b ∈ F+
i .

(f = # a). Lets break this down into a proof of each direction.

(⇒) We want to show that if Kn
i (# a) = true, then # a ∈ F+. It

must be that i < n, So by the definition of Kn
i , we know that

Kn
i (# a) = true implies that Kn

i+1(a) = true. and so by the in-
ductive hypothesis, we know that a ∈ F+

i+1. Then by Lemma 3.36,
# a ∈ F+

i .

(⇐) Now lets show that if # a ∈ F+
i , then Kn

i (# a) = true. We know
that since # a ∈ F+

i , Pi is a consistent PNP, Lemma 3.36 means
that a ∈ F+

i+1. Then by the induction hypothesis, Kn
i+1(a) = true,

so Kn
i (# a), by definition of Kn.

(f = a W b). Here we dont need to break into cases, we can prove
this directly. Kn

i (a W b) = true if and only if there exists k ∈ [i, n]
such that for all j ∈ [i, k), Kn

j (a) = true and Kn
k (b) = true. using

the inductive hypothesis, we know this statement holds if and only if
there exists k ∈ [i, n] such that for all j ∈ [i, k), a ∈ pos(Pj) and
b ∈ pos(Pk). Then by Lemma 3.36 the previous statement holds if and
only if aW b ∈ pos(Pi).

4

A.4 Decidability

Lemma A.15. For every formula c and every finite Kripke structure Kn,

Kn
n(c) = Kn

n(drop(c))
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Proof. Let c be an arbitrary formula, Kn an arbitrary Kripke structure. Show
that Kn

n(c) = Kn
n(c). By induction on the structure of c:

Case 1: (c ≡ ⊥). Since drop(⊥) = ⊥, and clearly Kn
n(⊥) = Kn

n(⊥), the
result follows.

Case 2: (c ≡ v ∈ V). Since drop(v) = v, the result follows.

Case 3: (c ≡ a → b). By definition, drop(a → b) = drop(a) → drop(b).
Again, by definition Kn

n(a → b) = true if and only if Kn
n(a) = false

or Kn
n(b) = true. We can also expand the definition for drop(a) →

drop(b) and see that Kn
n(drop(a) → drop(b)) = true if and only if

Kn
n(drop(a)) = false or Kn

n(drop(b)) = true. The inductive hypothesis
gives that Kn

n(drop(a)) = Kn
n(a) and Kn

n(drop(b)) = Kn
n(b). So, We

have that Kn
n(drop(a)→ drop(b)) = true if and only if Kn

n(a) = false or
Kn
n(b) = true. Which then implies Kn

n(drop(a) → drop(b) = Kn
n(a →

b).

Case 4: (c ≡ a W b). We have that drop(a W b) ≡ drop(a) ∨ drop(b).
ConsiderKn

n(aW b); we know by Soundness and completeness that this
is equivalent to Kn

n(b ∨ a ∧ (aW b)). We also know that Kn
n( F ) =

true for any formula F . So we equivalently have to consider Kn
n(b∨a),

which is true when Kn
n(b) = true or Kn

n(a) = true. The inductive
hypothesis is that Kn

n(b) = Kn
n(drop(b)) and Kn

n(a) = Kn
n(drop(a)).

This gives us that Kn
n(b ∨ a) = true if and only if Kn

n(drop(b)) = true
or Kn

n(drop(a)) = true. The by definition Kn
n(b ∨ a) = Kn

n(drop(a) ∨
drop(b)) = Kn

n(drop(aW b).

4

Lemma A.16 (Rules are Sound). Let TP be a tableau for a PNP P, and Q
be some node of TP . For all temporal structures K and all i ∈ N:

a) If (#) does not apply, then Kn
i (Q̂) = Kn

i (Q̂′) for some successor Q′ of
Q.

b) If (#) applies, then Kn
i (Q̂) = Kn

i+1(Q̂′) for the successor Q′ of Q. Also,

Q̂′ is satisfiable only if Q̂ is satsifiable.

Proof.
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a) We will analyze each of the rules that could have applied, and show
that the property holds for each of them:

(⊥) If (⊥) applies to Q, then Q has no successor, and the property
holds vacuously.

(→+) If (→+) applies to Q then there is some a → b ∈ pos(Q) that
is being acted on. In the left successor, Ql, we have b ∈ pos(Ql),
and in the right successor, Qr, we have a ∈ ¬(Qr). We know that
Kn
i (a → b) = true if and only if Kn

i (a) = false or Kn
i (b) = true.

Notice that Kn
i (Q̂l) = true if and only if Kn

i (a) = false and that

Kn
k (Q̂r) = true, if and only if Kn

i (b) = true. And so we have that

Kn
i (Q̂) = true if and only if Kn

i (Q̂r) = true or Kn
i (Q̂r) = true.

The result follows.

(→−) If (→−) applies to Q then there is some a → b ∈ pos(Q) that
is being acted on. For the single successor Q′, a ∈ pos(Q′) and
b ∈ neg(Q′). Recall that Kn(a → b) = false if and only if both
Kn
i (a) = true and Kn

i (b) = false. Since these are the only terms
that change from Q to Q′, we know that Kn

i (Q) = Kn
i (Q′).

(W+) If (W+) applies to Q, then there is some a W b ∈ pos(Q),
and there are two successors, Ql and Qr. We know that b ∈
Ql and a, (a W b) ∈ pos(Qr). Soundness, Completeness, and
BackUnroll give that Kn

i (aW b) = true if and only if Kn
i (b) =

true orKn
i (a∧ (aW b)) = true. This implies thatKn

i (Q̂) = true

if and only if Kn
i (Q̂l) = true or Kn

i (Q̂r) = true. The result
follows.

(W−) If (W−) applies to Q, then there is some a W b ∈ neg(Q).
There are two succesors, Ql and Qr. By definition, a, b ∈ neg(Ql),
#¬(a W b) ∈ pos(Qr). Then Soundness and Completeness give
us that Kn

i (a W b) = false, if and only if Kn
i (a ∧ b) = true or

Kn
i (#¬(aW b)) = false. This gives us that Kn

i (Q̂) = true if and

only if Kn
i (Q̂l) = true or Kn

i (Q̂r) = true. The result follows.

(end) If (end) applies to Q, then all of the elements of FQ are either the
symbol ⊥, a variable, or of the form # a. Also #> ∈ neg(Q) and
σ+
1 (Q) = ∅. Then Q′ = (drop(pos(Q)), drop(neg(Q)) ∪ {#>}).

There are no more positive temporal formulae, so we can consider
Kn
n(Q̂′). By Lemma 3.45, Kn

n−1(Q̂) = Kn
n(Q̂′).
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b) Let Q be a node in TP , and Q′ a successor of Q. Then we know that
every formula in pos(Q) and neg(Q) is of the form # a. We also know
that #⊥ 6∈ neg(Q). So for a given formula # a ∈ FQ, we know that
Kn
i (# a) = Kn

i+1(a). Then we can conclude that Kn
i (Q) = Kn

i+1(Qi).

Assume that Q̂ is satisfiable. Let Kn = (η0, η1, . . . , ηn−1) be a satisfy-

ing model. We know that Kn
0 (Q̂) = true. We have just proven that

Kn
1 (Q̂) = true. So if we let K ′n−1 = (η1, . . . , ηn−1), then it is clear that

K ′n−10 (Q̂) = true.

4

Lemma A.17 (Tableau Paths Not Closed). Let Q be a node in a tableau

and Kn a finite Kripke structure such that Kn
0 (Q̂) = true. Consider a path

πK
n
(Q) = Q0,Q1, . . . ,Qm, then

(a) For every i = 0, . . . ,m, then Kn
cnt(i)(Q̂i) = true.

(b) πK
n
(Q) does not contain any closed node, and

Proof. Let Q be an arbitrary node in a tableau, with Kn a Kripke structure
such that Kn is a finite kripke structure with Kn

0 (Q̂) = true. Consider a
path πK

n
(Q) = Q0,Q1, . . . ,Qm. Now show the desired properties

(a) Consider an arbitrary i ∈ {0, 1, . . . ,m}, to show that Kn
cnt(i)(Q̂i) =

true. We will do so inductively.

First we let i = 0 and see that since cnt(0) = 0, Q = Q0 and Kn
0 (Q̂0) =

true, we are done.

Now consider the general case, where for every element Qj of the path

πK(Q) up to the current one, Qi,(i.e. j < i) has Kn
cnt(j)(Q̂j) = true.

We are considering the next element, Qi, and we want to show that
Kn
cnt(i)(Q̂i) = true. We have two cases. If cnt(i− 1) = cnt(i), then we

know that Kn
cnt(i)(Q̂i−1) = true, and Lemma 3.47 gives Kn

cnt(i)(Q̂i) =

true. Otherwise cnt(i − 1) + 1 = cnt(i), and Q is the only successor.

Then by parts b) or c) of Lemma 3.47, we conclude that Kn
cnt(i)(Q̂i) =

true.
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(b) We want to show that πK
n
(Q) has no closed node. Assume some Qi

in the path is closed according to one of the rules (C1), (C2), or (C3).
We proceed by induction on the m = πK

n
(Q).

(C1) If (⊥) applies to a node Qi, Kn(Q̂i) = false, which contradicts
part (a).

(C2) Assume all the successors of Qi are closed, but the induction hy-
pothesis gives that at least one of them (specifically Qi+1) is not,
hence Qi is not closed.

(C3) Assume that all terminating paths of Qi have at least one closed
node. Then for the successor of Qi in πK

n
(Q), namely Qi+1, we

know that all terminating paths in the tableau, rooted at Qi+1,
have at least one closed node. Hence, Qi+1 is closed. However,
the induction hypothesis says that Qi+1 is not closed, and so there
must exist a terminating path rooted at Qi (in fact one such path
is πk(Q)).

4

Lemma A.18 (Path Modeling). Given a rooted, finite, terminating path
π = P0, P1, P2, . . . , Pn, in a tableau TP for some PNP P. If Kn is a temporal
structure such that for every v ∈ V and i ∈ N,

v ∈ pos(Pidx(i))⇒ ηi(v) = true

v ∈ neg(Pidx(i))⇒ ηi(v) = false,

then for every v ∈ V and i ∈ N,

a ∈ pos(Pi)⇒ Kcnt(i)(a) = true

a ∈ neg(Pi)⇒ Kcnt(i)(a) = false.

Proof. Let P be a PNP, and TP be a tableau. Let P0, P1, . . . , Pn be a ter-
minating path such that P0 = P . Let Kn be defined such that for every
i ∈ {1, . . . , n} and variable v ∈ V,

v ∈ pos(Pidx(i))⇒ ηi(v) = true

v ∈ neg(Pidx(i))⇒ ηi(v) = false.

89



Consider an arbitrary node Pi for some i ∈ {1, . . . , n}, and a formula
a ∈ FPi

. Show that a ∈ pos(Pi) means that Kcnt(i)(a) = true and a ∈ neg(Pi)
implies Kcnt(i)(a) = false. We will proceed by induction on the structure of
the formula a:

Case 1: (a ≡ v ∈ V). Assume a ∈ pos(Pi), then i ≤ idx(cnt(i)). In
the construction of TP and the definitions of idx and cnt, note that
no variables are removed until idx(cnt(i)) + 1. So it must be that v ∈
pos(Pidx(cnt(i))). Then the construction of Kn gives Kn

cnt(i)(a) = true.

Assume now that a ∈ neg(Pi). Again by definition, a ∈ neg(Pidx(cnt(i))),
and so Kn

cnt(i)(a) = true.

Case 2: (a ≡ ⊥). If ⊥ ∈ pos(Pi), we must be in a contradiction
since we have assumed that Pi is not closed. So, the other option
is that ⊥ ∈ neg(Pi). By definition of any arbitrary valuation function,
Kn
j (⊥) = false for every j ∈ {1, . . . , n}. So of course Kn

cnt(i)(⊥) = false.

Case 3: (a ≡ b → c). Assume a ∈ pos(Pi). At the current “time
slice” we have the nodes Pi, . . . , Pidx(cnt(i)). Since node Pidx(cnt(i))+1

represents an application of (end) or (#), we know that at some index
i ≤ j < idx(cnt(i)), the rule (→+) is applied to a. By construction, it
follows that b ∈ neg(Pj+1) or c ∈ pos(Pj+1). The induction hypothesis
gives that Kn

cnt(j)(A) = true, and that Kn
cnt(j)(A) = true. This gives us

Kn
cnt(j)(A) = true. Note that since i ≤ j < st(cnt(i)), we know that

cnt(j) = cnt(i), and so we conclude that Kn
cnt(i)(A) = true.

Assume, contrarily, that a ∈ neg(Pi). Consider the same “time slice”
portion of the path as above, namely Pi, . . . , Pidx(cnt(i)). By the same
analysis there must be some index i ≤ j ≤ idx(cnt(i)) such that (→−)
is applied to a in Pj. This means that b ∈ pos(Pj+1) and c ∈ neg(Pj+1).
The inductive hypothesis gives that Kn

cnt(j)(a) = true and Kn
cnt(j)(c) =

false. The definition of Kn and the fact that cnt(i) = cnt(j) means
that Kn

cnt(j)(b→ c) = false.

Case 4: (a ≡ # b). Without loss of generality, let # b ∈ pos(Pi). We
know that # b ∈ pos(Pst(cnt(i))), by the construction of st, cnt, and TP .
Then, by tableau construction, b ∈ FPst(cnt(i))+1). Note that Kn

cnt(i)(b) =

Kn
cnt(i)+1(b) = Kn

idx(idx(cnt(i))+1)(b). The inductive hypothesis gives that

Kn
idx(idx(cnt(i))+1)(b) = true, and so conclude that Kn

idx(idx(cnt(i))+1)(b)
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Case 5: (a ≡ a W b). Let b W c ∈ pos(Pi), and as in previous sub-
proofs, we know that there exists some j ∈ [i, idx(cnt(i))) at which the
(W+) rule is applied to a in Pj. At this point, we know that either c ∈
pos(Pj+1), or b∧ bW c ∈ pos(Pj+1). In the first case, we know by the
inductive hypothesis that Kn

cnt(j)(c) = Kn
cnt(i)(c) = true and so we have

that Kn
cnt(i)(b W c) = true. Otherwise, b ∧  b W c ∈ pos(Pj+1). So,

by a similar argument, we know that Kn
cnt(i)(b) = true. We also know

that #¬bW c ∈ neg(Pidx(cnt(i))), and that ¬bW c ∈ neg(Pidx(cnt(i))+1).
So there is some index k ∈ (idx(cnt(i)), idx(idx(cnt(i)+1))) ⊂ N, such
that a ∈ pos(Pk).
Continue with this process iteratively until the end of the path. One
of two outcomes will occur. Either for every k ≥ cnt(i), we see that
Kn
k (b) = true or there exists some k ≥ cnt(i) such that Kn

k (c) =
true and for every j ∈ (cnt(i), k), Kn

j (b) = true. Either way, we can
conclude that Kn(bW c) = true.

The proof is similar for bW c ∈ neg(Pi).

4

A.5 Derived Rules in LTLf

Lemma A.19. The following rule can be derived from the rules in Defini-
tion 3.19

` # a→ ¬end (NextNotEnd)

Proof. We can start with the Taut ` end∨¬end. Then applying the contra-
positive of EndNextContra to end gives ` ¬# a ∨ ¬end, which desugars
to ` # a→ ¬end.

4

Lemma A.20. The following rule can be derived from the rules in Defini-
tion 3.19

` ¬(#> ∧#⊥) (NextContraIsContra)

Proof. We know that ` >, so WkNextStep gives `  >. Then, by Taut,
` end∨ >. We can desugar this to ` ¬#>∨¬#¬>, which by DeMorgan’s
laws in Taut, gives ` ¬(#> ∧#⊥).
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4

Lemma A.21. The following rule can be derived from the rules in Defini-
tion 3.19

` ¬(¬# a ∧ ¬# a ∧ end (CommNegNextR)

Proof. We see, Taut and EndNextContra give ` ¬# a ∧#¬a ∧ end →
¬#∧#¬a ∧ ¬#¬a→ ⊥. The result follows by Taut. 4

Lemma A.22. The following rule can be derived from the rules in Defini-
tion 3.19

` ¬# a ∧#¬a→ end (CommNegNextR”)

Proof. We can write ` ¬# a ∧ #¬a → (end ∨ ¬end) ∧ ¬# a ∧ #¬a. Then
we can distribute to get ` ¬# a ∧ #¬a → (end ∧ ¬# a ∧ #¬a) ∨ (¬end ∧
¬# a ∧ #¬a). Then by CommNegNextR’ and Taut, we can conclude
` ¬# a ∧#¬a→ (¬end ∧ ¬# a ∧#¬a) The result follows by Taut. 4

Lemma A.23. The following rule can be derived from the rules in Defini-
tion 3.19

` ¬# a↔ end ∨#¬a (CommNegNext)

Proof. Consider each direction separately.

(→) We by Taut, we can see that ` ¬# a → ((¬# a ∧ #¬a) ∨ (¬# a ∧
¬#¬a)). Then by CommNegNextR” and Taut we see ` ¬# a →
(end ∨ ¬# a ∧ ¬#¬a). Then Taut gives ` ¬# a→ (end ∨ ¬(#¬a ∨
# a)), so by Taut we can write ` ¬# a→ end ∨#¬a.

(←) Equivalently show ` (¬end ∧ a) ∨ ¬# a.

Taut gives ` (end ∨ ¬end) ∧ (# a ∧ ¬# a), from which we can see

` (end ∧# a) ∨ (end ∧ ¬# a) ∨ (¬end ∧# a) ∨ (¬end ∧ ¬# a)

Note that ` ¬end∧# a is a direct consequence of EndNextContra.
So we now have

` (end ∧ ¬# a) ∨ (¬end ∧# a) ∨ (¬end ∧ ¬# a)
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The forwards direction and Taut gives

` (¬end ∧# a) ∨ (¬# a)

We now leverage the fact from Taut that ` ¬#¬a ∨#¬a to see

` (¬end ∧# a ∧#¬a) ∨ (end ∧# a ∧ ¬#¬a) ∨ ¬# a

Desugaring # a ∧ #¬a to ¬(¬# a ∨ ¬#¬a), we can then apply the
forwards direction to see that

` (¬end ∧ ¬(¬end ∨#¬a ∨ ¬#¬a)) ∨ (end ∧# a ∧ ¬#¬a) ∨ ¬# a

The leftmost disjunction is contradictory by Taut, so we can prove

` (end ∧# a ∧ ¬#¬a) ∨ ¬# a

4

Lemma A.24. The following rule can be derived from the rules in Defini-
tion 3.19

` (# a→ # b)↔ #(a→ b) ∨ end (NextDistr)

Proof. First prove the following

`  a ∧ ¬end→ # a (nextdistrlem)

We can see from Taut and CommNegNext that `  a∧¬end→ (end∨
#¬¬a)∧¬end. Then Taut gives `  a∧¬end→ #¬¬a∧¬end. Then, two
applications of CommNegNext give `  a∧¬end→ ¬¬# a∧¬end. Then
nextdistrlem follows by double-negation elimination from Taut. X.

Now, consider each direction separately

(→) Taut gives ` (# a → # b) → end ∨ (¬# a ∨ # b) ∧ ¬end. We
can distribute, using Taut, and get ` (# a → # b) → end ∨ (¬# a ∧
¬end) ∨ (¬¬# b ∧ ¬end. Finally, we can apply CommNegNext to
both applicable disjunctive clauses, and get ` (# a → # b) → end ∨
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(#¬a ∧ ¬end) ∨ ( b ∧ ¬end). Then we can factor the (¬end) out,
and desugar the disjunction to implication, giving ` (# a → # b) →
end ∨ (( a →  b) ∧ ¬end). Then, using WkNextDistr, we get
` (# a → # b) → end ∨ ( (a → b) ∧ ¬end). Then, nextdistrlem
applies to give ` # a → # b → end ∨ (#(a → b) ∧ ¬end). The result
follows by Taut.

(←) Let φ = #(a→ b)∨end. We know by Taut that ` φ→ #(a→ b)∧
end∨#(a→ b)∧¬end∨ end. We can simplify this formula using Taut
and EndNextContra, and see that ` φ → #(a → b) ∧ ¬end ∨ end.
Then we can apply nextdistrlem to get ` φ→ ¬end∧ (a→ b)∨end.
Then WkNextDistr gives ` φ→ ¬end ∧ a→  b ∨ end. Now, we
use Taut to get ` φ→ (¬ a ∧ ¬end ∨ b ∧ ¬end ∨ end. Now we use
CommNegNext 3 times to get ` φ→ (# a→ # b)∧¬end∨ end. And
now, we can use EndNextContra to get ` φ→ (# a→ # b)∧¬end∨
end∧ (¬# a) and finally, Taut gives ` φ→ (# a→ # b)∧¬end∨end∧
(# a→ # b). Then Taut gives ` #(a→ b) ∨ end→ # a→ # b.

4

Lemma A.25. The following rule can be derived from the rules in Defini-
tion 3.19

` a→ b

` # a→ # b
(NextMonotone)

Proof. We know ` a → b, we want to show ` # a → # b. WkNextStep
gives us `  (a→ b), to which we add a Taut to get `  (a→ b)∧end∨ (a→
b) ∧ ¬end. We can apply EndNextContra and Taut to get

` (¬# a ∨# b) ∧ (a→ b) ∧ ¬end

Then CommNegNext turns  (a → b) ∧ ¬end into #(a → b) ∧ ¬end.
Then NextDistr gives ` (¬# a ∨ # b) ∧ (# a → # b), so we conclude
` # a→ # b by Taut.

4

Lemma A.26. The following rule can be derived from the rules in Defini-
tion 3.19

`  a↔ (# a ∨ end) (NextWkNext)
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Proof. We know from Taut, that `  a↔  a∧(end∨¬end). Then by Taut,
CommNegNext, and Taut again, we get `  a↔ ( a∧end)∨ ¬a. Then
we see that `  a∧ end∨#¬a→ end∨#¬a by Taut, and the converse by
EndNextContra. Then, by Taut, conclude that `  a↔ (# a ∨ end).

4

Lemma A.27. The following rule can be derived from the rules in Defini-
tion 3.19

`  (a ∧ b)↔  a ∧ b (WkNextAndDistr)

Proof.

`  (a→ b)

↔  (¬(a→ ¬b)) def.

↔  (¬(a→ ¬b)) ∧ end ∨ ¬#(a→ ¬b) ∧ ¬end Taut

↔ end ∨ ¬#(a→ ¬b) ∧ ¬end EndNextContra,Taut

↔ end ∨ ¬ (a→ ¬b) ∧ ¬end NextWkNext

↔ end ∨ ¬( a→  ¬b) ∧ ¬end WkNextDistr

↔ end ∨ ¬( a→ ¬ b) ∧ ¬end CommNegNext

↔ end ∨ ( a ∧ b) ∧ ¬end Taut

↔  a ∧ b ∧ end ∨ a ∧ b ∧ ¬end EndNextContra,Taut

↔  a ∧ b Taut

So conclude `  (a ∧ b)↔ ( a ∧ b)
4

Lemma A.28. The following rule can be derived from the rules in Defini-
tion 3.19

` 2 a↔ a ∧ 2 a (AlwUnroll)

Proof. Desugar the proposition to ` (a W ⊥) ↔ a ∧  (a W ⊥). Then
WkUntilUnroll gives ` aW ⊥↔ ⊥∨ (a ∧ (aW ⊥)). Then Taut lets
you cancel the disjunctive ⊥, so conclude ` aW ⊥↔ a ∧ (aW ⊥), which
resugars to ` 2 a↔ a ∧ 2 a. 4
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Lemma A.29. The following rule can be derived from the rules in Defini-
tion 3.19

` (2 a ∧ ¬end)↔ a ∧#2 a (AlwUnrollStep)

Proof. We know ` (2 a ∧ ¬end) ↔ (a ∧  2 a) ∧ ¬end by AlwUnroll
and Taut. Then NextWkNext gives ` (a ∧  2 a ∧ ¬end) → a ∧ #2 a.
Similarly, ` a ∧#2 a→ a ∧ 2 a ∧ ¬end follows from NextNotEnd and
NextWkNext. This gives ` (2 a ∧ ¬end)↔ a ∧#2 a.

4

Lemma A.30. The following rule can be derived from the rules in Defini-
tion 3.19

` (2 a ∧ end)→ a (AlwEnd)

Proof. AlwUnroll gives ` (2 a ∧ end) ↔ a ∧  2 a. Then Taut gives
` a ∧ 2 a→ a. Compose these to get ` (2 a ∧ end)→ a.

4

Lemma A.31. The following rule can be derived from the rules in Defini-
tion 3.19

` 3 a↔ a ∨#3 a (EverUnroll)

Proof. By definition ` 3 a ↔ ¬2¬a. Then we can apply AlwUnroll
which gives ` 3 a ↔ ¬(¬a ∧  2¬a). Then Taut shows us that ` 3 a ↔
a ∨#¬2¬a. Then again by definition, ` 3 a↔ a ∨#3 a. 4

Lemma A.32. The following rule can be derived from the rules in Defini-
tion 3.19

` a→ b

` 2 a→ 2 b
(AlwMonotone)

Proof. Assume ` a→ b, to show ` 2 a→ 2 b. Apply AlwUnroll one step
to get ` 2 a ↔ a ∧  2 a. Then applying the assumption and Taut gives
` 2 a → b ∧  2 a. So we can conclude by Taut that ` 2 a →  2 a and
` 2 a→ b, which allows us to derive ` 2 a→ 2 b via Induction.

4
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Lemma A.33. The following rule can be derived from the rules in Defini-
tion 3.19

` ¬(¬#> ∧# a) (EndNextContra’)

Proof. NextNotEnd says ` end → ¬# a. By DeMorgan’s laws in Taut,
conclude ` ¬(end ∧# a).

4

Lemma A.34. The following rule can be derived from the rules in Defini-
tion 3.19

` (end ∧3 a)→ a (EverEnd)

Proof. We know ` (end∧3 a)↔ ((end∧ a)∨ (end∧#3 a)) from EverUn-
roll. Then since ` ¬(end ∧ #3 a) by EndNextContra’, conclude that
` (end ∧3 a)↔ (end ∧ a). And finally ` (end ∧3 a)→ a by Taut.

4

Lemma A.35. The following rule can be derived from the rules in Defini-
tion 3.19

` 2 a ∧2 b→ 2(a ∧ b) (AlwaysAndDistr)

Proof. The AlwUnroll and Taut rules give ` 2 a∧2 b→ a∧ b∧ 2 a∧
 2 b. Then apply WkNextAndDistr and Taut to get ` 2 a → (a ∧ b)
and ` 2 a →  (2 a ∧ 2 b). Then an application of Induction proves our
goal, that ` 2 a→ 2(a ∧ b).

4

Lemma A.36. The following rule can be derived from the rules in Defini-
tion 3.19

` 2 a ∧3 b→ 3(b ∧ a) (AlwaysEver)

Proof. Taut gives us that ` 2 a∧3 b↔ (2 a∧3 b)∧ (¬3(b∧a)∨3(b∧a)).
Notice that ` 2 a ∧ ¬3(b ∧ a) ↔ 2((¬b ∨ ¬a) ∧ a) by AlwaysAndDistr,
then Taut and AlwaysAndDistr lets us conclude that ` (2 a ∧ ¬3(b ∧
a)) ↔ 2(¬b) ∧ 2 a. So, now we can say that ` 2 a ∧ 3 b ∧ ¬3(b ∧ a) ↔
2 a ∧2(¬b) ∧3 b, which is contradictory by Taut.

Conclude that ` 2 a ∧3 b→ 3(b ∧ a)), by Taut.
4
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Lemma A.37. The following rule can be derived from the rules in Defini-
tion 3.19

` 2 a→ 3(end ∧ a) (AlwaysFinite)

Proof. We know ` 2 a ↔ (2 a ∧ 3 end) by Finite and Taut. Then Al-
waysEver and Taut give ` 2 a→ 3(end ∧ a). 4

Lemma A.38. The following rule can be derived from the rules in Defini-
tion 3.19

` #(a ∨ b)↔ # a ∨# b (NextOrDistr)

Proof. We want to show ` #(a ∨ b) ↔ # a ∨ # b. We can desugar this to
` #((¬a)→ b)↔ ¬# a→ # b.

(→) The rules NextDistr and NextNotEnd give ` #((¬a) → b) →
¬end∧ (#(¬a)→ # b)). Then by Taut and CommNegNext, we get
` #((¬a)→ b)→ (#¬a)→ # b

(←) We know that ` ¬# a → # b ↔ (¬# a → # b) ∧ (¬# a ∨ # a). Then
we also see, by Taut, that ` ¬# a → # b → (¬# a → # b) ∧ (# b ∨
# a) which lets us conclude by NextNotEnd and Taut ` (¬# a→
# b)→ (¬# a→ # b) ∧ ¬end. Then CommNegNext and Taut give
` (¬end ∧ (¬# a → # b)) → (#¬a → # b). Then by NextDistr we
can see ` (¬end ∧ (¬# a → # b)) → #(¬a → b) which ultimately lets
us conclude that ` (# a ∨# b)→ #(a ∨ b).

4

Lemma A.39. The following rule can be derived from the rules in Defini-
tion 3.19

` #(a ∧ b)↔ # a ∧# b (NextAndDistr)

Proof. We will phrase this in terms of distributivity over ∨. So we can
rephrase the goal as ` #(¬(¬a ∨ ¬b)) ↔ ¬(¬# a ∨ ¬# b). We will prove
each case separately.

By NextNotEnd and Taut, we get ` #(¬(¬a ∨ ¬b)) ↔ #(¬(¬a ∨
¬b)) ∧ ¬end. Then from CommNegNext and Taut, we see ` #(¬(¬a ∨
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¬b))↔ ¬(#(¬a∨¬b))∧¬end Then by NegNextDistr, we get ` #(¬(¬a∨
¬b))↔ ¬(#¬a ∨#¬b) ∧ ¬end And finally by CommNegNext, and Taut
we conclude that ` #(¬(¬a ∨ ¬b))↔ ¬(¬# a ∨ ¬# b) ∧ ¬end. Then finally
by NextNotEnd and Taut, we conclude ` #(a ∧ b)↔ # a ∧# b.

4

Lemma A.40. The following rule can be derived from the rules in Defini-
tion 3.19

`  > (WkNextTop)

Proof. Taut gives ` >. Then from WkNextStep, we get `  >. 4

Lemma A.41. The following rule can be derived from the rules in Defini-
tion 3.19

` (a U b)↔ b ∨ (a ∧#(a U b)) (UntilUnroll)

Proof. We prove both directions simultaneously. We show (a U b)→ b∨ a∧
#(a U b) using only “if and only if” implications.

Assume a U b, to show b ∨ a ∧ #(a U b). Desugar both the premise to
get a W b ∧ 3 b. Apply WkUntilUnroll and EverUnroll to get the
statement (b∨a∧ (aW b))∧ (b∨#3 b). We can simplify this using Taut,
and we see that b ∨ a ∧ (aW b) ∧#3 b.

We can introduce the tautology ¬end ∨ end to the right branch of the ∨,
giving (b ∨ a ∧  (a W b) ∧ #3 b) ∧ (end ∨ ¬end). Expanding this, we can
see that end and #3 b result in a contradiction via NextNotEnd. So we
simply have b∨a∧ aW b∧#3 b∧¬end. Since ¬end, we note that  can be
replaced with # (via CommNegNext). So we get b∨a∧#(aW b)∧#3 b.
Then using NextAndDistr, we get b ∨ (a ∧#(aW b ∧3 b)).

4

Lemma A.42. The following rule can be derived from the rules in Defini-
tion 3.19

` ¬(a U b)↔ (¬b)W (¬a ∧ ¬b) (NotUntil)

Proof. We will prove each direction separately.
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(→) The UntilUnroll rule gives ` ¬(a U b)↔ ¬(b ∨ a ∧#(a U b). Then
Taut gives us ` ¬(a U b)↔ (¬b ∧ ¬a) ∨ (¬b ∧ ¬#(a U b)). Note that
Taut gives ` ¬(a U b)→ ¬b. This will be useful later. Consider each
case separately:

Notice that we can immediately turn the (¬b∧¬a) into (¬b)W (¬a∧
¬b) from WkUntilUnroll and Taut. So, we now have ` ¬(a U
b)↔ ((¬b)W (¬a ∧ ¬b)) ∨ (¬b ∧ ¬#(a U b)).
We can apply CommNegNext to conclude that

` ¬(a U b)↔ ((¬b)W (¬a ∧ ¬b)) ∨ (¬b ∧#¬(a U b)) ∨ (¬b ∧ end).

Then EndNextContra gives ` ¬b∧end→ ¬b∧ 2¬b, which allows
us to conclude the following from AlwaysWkUntil and Taut:

` ¬(a U b)→ ((¬b)W (¬a ∧ ¬b)) ∨ (¬b ∧ end).

Further, we can show, by NextWkNext that ` ¬(a U b) ∧ (a ∨ b)→
¬ ∧  (¬(a W b)), which by induction gives 2¬b, which in turn by
AlwaysWkUntil and Taut derives ` ¬(a U b)→ (¬b)W (¬a∧¬b).

(←) WkUntilUnroll gives ` (¬b) W (¬b ∧ ¬b) ↔ (¬a ∧ ¬b) ∨ (¬b ∧
 ((¬b)W (¬a ∧ ¬b))).
We can introduce ¬(a U b) ∨ (a U b) to the first disjunct. However
` a U b → a ∨ b, by WkUntilUnroll which is contradictory, so
conclude

` (¬b)W (¬b ∧ ¬b)→ aW b ∨ (¬b ∧ ((¬b)W (¬a ∧ ¬b)))

Then Taut gives

` ((¬b)W (¬b∧¬b)∧ (a∨ b)→ (¬b∧ ((¬b)W (¬a∧¬b)∧ (a∨ b))),

to which we can apply Induction and conclude

` (¬b)W (¬b ∧ ¬b) ∧ (a ∨ b)→ 2¬b

Then, finally, we have

` (¬b)W (¬a ∧ ¬b)→ ¬(aW b) ∨2¬b

This is equivalent to the result by Taut, because ` ¬(aW b)∨2¬b↔
¬(a U b) is a result of syntactic sugarings and Taut.
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4

Lemma A.43 (Duality of 3 and 2). The following rules can be derived from
the rules in Definition 3.19

` 2 a↔ ¬3¬a (AlwaysEverDual)

` 3 a↔ ¬2¬a (EverAlwaysDual)

Proof.

1. Desugar 3 a to ¬2¬a. Then the goal is 2 a↔ ¬¬2¬¬a. The nega-
tions cancel by Taut, and the result follows.

2. By definition.

4

Lemma A.44. The following rule can be derived from the rules in Defini-
tion 3.19

` a→  a ∧ b
` a→ 2 b

(Induction’)

Proof. Assume ` a →  a ∧ b. Taut breaks this down to ` a →  a and
` a→ b. Then we apply Induction and conclude ` a→ 2 b. 4

Lemma A.45. The following rule can be derived from the rules in Defini-
tion 3.19

` 2 a→ aW b (AlwaysWkUntil)

Proof. We know from Taut that ` 2 a → ((a W b) ∨ ¬(a W b)), so if we
show that ` ¬(2 a ∧ ¬(aW b)), we can conclude that 2 a→ (aW b).

We know by AlwUnroll and WkUntilUnroll that

` 2 a→ a ∧ 2 a, and

` (¬aW b)→ (¬b ∧ ¬a ∨ ¬b ∧#¬(aW b))

Then, we can combine these two with Taut and NextWkNext to see
that

` (2 a ∧ ¬(aW b))→  2 a ∧ ¬(aW b)
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Then WkNextAndDistr gives ` (2 a∧¬(aW b))→  2 a∧ ¬(aW
b) and Taut admits ` (2 a ∧ ¬(a W b)) → (2 a ∧ ¬(a W b)). Then
Induction lets us conclude that

` (2 a ∧ ¬(aW b))→ 2(2 a ∧ ¬(aW b))

Then by AlwUnroll and Taut we have

` (2 a ∧ ¬(aW b))↔ 2(2 a ∧ ¬(aW b)).

Now, we from above that ` ¬(aW b)→ #¬(aW b), which by NextNo-
tEnd gives ` ¬(a W b) →6 end. Then by AlwMonotone and Taut,
conclude that

` 2(2 a ∧ ¬(aW b))→ 2¬end

which, by Taut shows ` ¬(2 a∧¬(aW b)), so conclude that ` 2 a→ aW b
4

Lemma A.46. The following rule can be derived from the rules in Defini-
tion 3.19

` c→ b ∨ (a ∧ c)
` c→ aW b

(WkUntilInduction)

Proof. Let d , c ∧ ¬a W b. Recall the WkUntilUnroll, rule, which
says that ` a W b → b ∧ [a ∧  (a W b)]. Its negation is ` ¬(a W b) →
¬b ∧ [¬a ∨#¬(aW b)]. Then we can say ` d→ ¬b ∧ [¬a ∨ ¬(aW b)], by
NextWkNext. Then because ` d → c, Taut gives that ` d → a ∧  c ∧
¬b ∧ #¬(a W b). Note especially that ` d → a, and ` d →  c. Hence,
also, ` d→  c∧ ¬(aW b). Then using WkNextAndDistr, we see that
` d →  [c ∧ ¬(a W b)], which is, by definition, ` d →  d. Since we have
` d→ a and ` d→  d, conclude ` d→ 2 a by Induction.

We know ` d→ 2 a, so by AlwaysWkUntil, we get ` d→ aW b. This
is equivalent to ` [c ∧ ¬(aW b)]→ aW b, which entails ` ¬(c ∧ ¬(aW b)).
Then conclude ` c→ aW b via Taut. 4

Lemma A.47. The following rule can be derived from the rules in Defini-
tion 3.19

` (aW b ∧2¬b)→ 2 a (WkUntilAlways)
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Proof. WkUntilUnroll and AlwUnroll give ` (a W b) ∧ 2¬b) →
(b ∨ a ∧  (a W b)) ∧ ¬b ∧  2¬b. Then Taut and WkNextAndDistr
gives ` (aW b)∧2¬b)→ b∨ (¬b∧a∧ (aW b∧¬b), and then Taut again
gives ` (aW b ∨ ∧¬b)→ ⊥∨ a ∧ ((aW b) ∧ 2¬b). Then applying Taut
and WkUntilInduction gives ` (a W b ∧ 2¬b) → a W ⊥, which is, by
definition, exactly what we wanted to prove. 4
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